Skip to main content

Advertisement

Log in

Nicotinic modulation of neuronal networks: from receptors to cognition

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Nicotine affects many aspects of human cognition, including attention and memory. Activation of nicotinic acetylcholine receptors (nAChRs) in neuronal networks modulates activity and information processing during cognitive tasks, which can be observed in electroencephalograms (EEGs) and functional magnetic resonance imaging studies.

Objectives

In this review, we will address aspects of nAChR functioning as well as synaptic and cellular modulation important for nicotinic impact on neuronal networks that ultimately underlie its effects on cognition. Although we will focus on general mechanisms, an emphasis will be put on attention behavior and nicotinic modulation of prefrontal cortex. In addition, we will discuss how nicotinic effects at the neuronal level could be related to its effects on the cognitive level through the study of electrical oscillations as observed in EEGs and brain slices.

Results/Conclusions

Very little is known about mechanisms of how nAChR activation leads to a modification of electrical oscillation frequencies in EEGs. The results of studies using pharmacological interventions and transgenic animals implicate some nAChR types in aspects of cognition, but neuronal mechanisms are only poorly understood. We are only beginning to understand how nAChR distribution in neuronal networks impacts network functioning. Unveiling receptor and neuronal mechanisms important for nicotinic modulation of cognition will be instrumental for treatments of human disorders in which cholinergic signaling have been implicated, such as schizophrenia, attention deficit/hyperactivity disorder, and addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alkondon M, Albuquerque EX (1993) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther 265:1455–1473

    PubMed  CAS  Google Scholar 

  • Alkondon M, Albuquerque EX (2004) The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Prog Brain Res 145:109–120

    Article  PubMed  CAS  Google Scholar 

  • Alkondon M, Pereira EF, Barbosa CT, Albuquerque EX (1997) Neuronal nicotinic acetylcholine receptor activation modulates gamma-aminobutyric acid release from CA1 neurons of rat hippocampal slices. J Pharmacol Exp Ther 283:1396–1411

    PubMed  CAS  Google Scholar 

  • Alkondon M, Pereira EF, Eisenberg HM, Albuquerque EX (1999) Choline and selective antagonists identify two subtypes of nicotinic acetylcholine receptors that modulate GABA release from CA1 interneurons in rat hippocampal slices. J Neurosci 19:2693–2705

    PubMed  CAS  Google Scholar 

  • Alkondon M, Pereira EF, Eisenberg HM, Albuquerque EX (2000) Nicotinic receptor activation in human cerebral cortical interneurons: a mechanism for inhibition and disinhibition of neuronal networks. J Neurosci 20:66–75

    PubMed  CAS  Google Scholar 

  • Ascioglu M, Dolu N, Golgeli A, Suer C, Ozesmi C (2004) Effects of cigarette smoking on cognitive processing. Int J Neurosci 114:381–390

    Article  PubMed  Google Scholar 

  • Audet MA, Doucet G, Oleskevich S, Descarries L (1988) Quantified regional and laminar distribution of the noradrenaline innervation in the anterior half of the adult rat cerebral cortex. J Comp Neurol 274:307–318

    Article  PubMed  CAS  Google Scholar 

  • Audet MA, Descarries L, Doucet G (1989) Quantified regional and laminar distribution of the serotonin innervation in the anterior half of adult rat cerebral cortex. J Chem Neuroanat 2:29–44

    PubMed  CAS  Google Scholar 

  • Avendano C, Umbriaco D, Dykes RW, Descarries L (1996) Acetylcholine innervation of sensory and motor neocortical areas in adult cat: a choline acetyltransferase immunohistochemical study. J Chem Neuroanat 11:113–130

    Article  PubMed  CAS  Google Scholar 

  • Barazangi N, Role LW (2001) Nicotine-induced enhancement of glutamatergic and GABAergic synaptic transmission in the mouse amygdala. J Neurophysiol 86:463–474

    PubMed  CAS  Google Scholar 

  • Beierlein M, Gibson JR, Connors BW (2000) A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat Neurosci 3:904–910

    Article  PubMed  CAS  Google Scholar 

  • Beyer CE, Steketee JD (2002) Cocaine sensitization: modulation by dopamine D2 receptors. Cereb Cortex 12:526–535

    Article  PubMed  Google Scholar 

  • Blatow M, Rozov A, Katona I, Hormuzdi SG, Meyer AH, Whittington MA, Caputi A, Monyer H (2003) A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron 38:805–817

    Article  PubMed  CAS  Google Scholar 

  • Blondel A, Simon H, Sanger DJ, Moser P (1999) The effect of repeated nicotine administration on the performance of drug-naive rats in a five-choice serial reaction time task. Behav Pharmacol 10:665–673

    Article  PubMed  CAS  Google Scholar 

  • Blondel A, Sanger DJ, Moser PC (2000) Characterisation of the effects of nicotine in the five-choice serial reaction time task in rats: antagonist studies. Psychopharmacology (Berl) 149:293–305

    Article  CAS  Google Scholar 

  • Bouyer JJ, Montaron MF, Vahnee JM, Albert MP, Rougeul A (1987) Anatomical localization of cortical beta rhythms in cat. Neuroscience 22:863–869

    Article  PubMed  CAS  Google Scholar 

  • Bringmann A (1996) Behaviour-related effects of nicotine on slow EEG waves in basal nucleus-lesioned rats. Naunyn Schmiedebergs Arch Pharmacol 353:168–174

    Article  PubMed  CAS  Google Scholar 

  • Buhl EH, Tamas G, Fisahn A (1998) Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J Physiol 513:117–126

    Article  PubMed  CAS  Google Scholar 

  • Burnashev N (1998) Calcium permeability of ligand-gated channels. Cell Calcium 24:325–332

    Article  PubMed  CAS  Google Scholar 

  • Burnashev N, Zhou Z, Neher E, Sakmann B (1995) Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol 485(Pt 2):403–418

    PubMed  CAS  Google Scholar 

  • Buzsaki G, Laszlovszky I, Lajtha A, Vadasz C (1990) Spike-and-wave neocortical patterns in rats: genetic and aminergic control. Neuroscience 38:323–333

    Article  PubMed  CAS  Google Scholar 

  • Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12:1–47

    Article  PubMed  CAS  Google Scholar 

  • Cauli B, Audinat E, Lambolez B, Angulo MC, Ropert N, Tsuzuki K, Hestrin S, Rossier J (1997) Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci 17:3894–3906

    PubMed  CAS  Google Scholar 

  • Champtiaux N, Han ZY, Bessis A, Rossi FM, Zoli M, Marubio L, McIntosh JM, Changeux JP (2002) Distribution and pharmacology of alpha 6-containing nicotinic acetylcholine receptors analyzed with mutant mice. J Neurosci 22:1208–1217

    PubMed  CAS  Google Scholar 

  • Charpantier E, Barneoud P, Moser P, Besnard F, Sgard F (1998) Nicotinic acetylcholine subunit mRNA expression in dopaminergic neurons of the rat substantia nigra and ventral tegmental area. NeuroReport 9:3097–3101

    PubMed  CAS  Google Scholar 

  • Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P (1995) Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378:75–78

    Article  PubMed  CAS  Google Scholar 

  • Contant C, Umbriaco D, Garcia S, Watkins KC, Descarries L (1996) Ultrastructural characterization of the acetylcholine innervation in adult rat neostriatum. Neuroscience 71:937–947

    Article  PubMed  CAS  Google Scholar 

  • Contreras D, Destexhe A, Sejnowski TJ, Steriade M (1997) Spatiotemporal patterns of spindle oscillations in cortex and thalamus. J Neurosci 17:1179–1196

    PubMed  CAS  Google Scholar 

  • Cordero-Erausquin M, Marubio LM, Klink R, Changeux JP (2000) Nicotinic receptor function: new perspectives from knockout mice. Trends Pharmacol Sci 21:211–217

    Article  PubMed  CAS  Google Scholar 

  • Coull JT (1998) Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol 55:343–361

    Article  PubMed  CAS  Google Scholar 

  • Couturier S, Bertrand D, Matter JM, Hernandez MC, Bertrand S, Millar N, Valera S, Barkas T, Ballivet M (1990) A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX. Neuron 5:847–856

    Article  PubMed  CAS  Google Scholar 

  • Dajas-Bailador F, Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci 25:317–324

    Article  PubMed  CAS  Google Scholar 

  • Dani JA, Ji D, Zhou FM (2001) Synaptic plasticity and nicotine addiction. Neuron 31:349–352

    Article  PubMed  CAS  Google Scholar 

  • de Rover M, Lodder JC, Kits KS, Schoffelmeer AN, Brussaard AB (2002) Cholinergic modulation of nucleus accumbens medium spiny neurons. Eur J Neurosci 16:2279–2290

    Article  PubMed  Google Scholar 

  • de Rover M, Mansvelder HD, Lodder JC, Wardeh G, Schoffelmeer AN, Brussaard AB (2004) Long-lasting nicotinic modulation of GABAergic synaptic transmission in the rat nucleus accumbens associated with behavioural sensitization to amphetamine. Eur J Neurosci 19:2859–2870

    Article  PubMed  Google Scholar 

  • Descarries L, Mechawar N (2000) Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog Brain Res 125:27–47

    PubMed  CAS  Google Scholar 

  • Descarries L, Gisiger V, Steriade M (1997) Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol 53:603–625

    Article  PubMed  CAS  Google Scholar 

  • Drisdel RC, Green WN (2000) Neuronal alpha-bungarotoxin receptors are alpha7 subunit homomers. J Neurosci 20:133–139

    PubMed  CAS  Google Scholar 

  • Ernst M, Heishman SJ, Spurgeon L, London ED (2001) Smoking history and nicotine effects on cognitive performance. Neuropsychopharmacology 25:313–319

    Article  PubMed  CAS  Google Scholar 

  • Everitt BJ, Robbins TW (1997) Central cholinergic systems and cognition. Annu Rev Psychol 48:649–684

    Article  PubMed  CAS  Google Scholar 

  • Everitt BJ, Dickinson A, Robbins TW (2001) The neuropsychological basis of addictive behaviour. Brain Res Brain Res Rev 36:129–138

    Article  PubMed  CAS  Google Scholar 

  • Fagen ZM, Mansvelder HD, Keath JR, McGehee DS (2003) Short- and long-term modulation of synaptic inputs to brain reward areas by nicotine. Ann N Y Acad Sci 1003:185–195

    Article  PubMed  CAS  Google Scholar 

  • Ferger B, Kuschinsky K (1997) Biochemical studies support the assumption that dopamine plays a minor role in the EEG effects of nicotine. Psychopharmacology (Berl) 129:192–196

    Article  CAS  Google Scholar 

  • Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394:186–189

    Article  PubMed  CAS  Google Scholar 

  • Fisher JL, Pidoplichko VI, Dani JA (1998) Nicotine modifies the activity of ventral tegmental area dopaminergic neurons and hippocampal GABAergic neurons. J Physiol Paris 92:209–213

    Article  PubMed  CAS  Google Scholar 

  • Foulds J, McSorley K, Sneddon J, Feyerabend C, Jarvis MJ, Russell MA (1994) Effect of subcutaneous nicotine injections of EEG alpha frequency in non-smokers: a placebo-controlled pilot study. Psychopharmacology (Berl) 115:163–166

    Article  CAS  Google Scholar 

  • Frazier CJ, Rollins YD, Breese CR, Leonard S, Freedman R, Dunwiddie TV (1998) Acetylcholine activates an alpha-bungarotoxin-sensitive nicotinic current in rat hippocampal interneurons, but not pyramidal cells. J Neurosci 18:1187–1195

    PubMed  CAS  Google Scholar 

  • Fucile S (2004) Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium 35:1–8

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Ji Z, Morita N, Sumikawa K (1999) Acute and chronic nicotine exposure differentially facilitate the induction of LTP. Brain Res 846:137–143

    Article  PubMed  CAS  Google Scholar 

  • Fuster JM (2000a) Executive frontal functions. Exp Brain Res 133:66–70

    Article  PubMed  CAS  Google Scholar 

  • Fuster JM (2000b) Prefrontal neurons in networks of executive memory. Brain Res Bull 52:331–336

    Article  PubMed  CAS  Google Scholar 

  • Gabbott PL, Dickie BG, Vaid RR, Headlam AJ, Bacon SJ (1997) Local-circuit neurones in the medial prefrontal cortex (areas 25, 32 and 24b) in the rat: morphology and quantitative distribution. J Comp Neurol 377:465–499

    Article  PubMed  CAS  Google Scholar 

  • Gabbott PL, Warner TA, Jays PR, Bacon SJ (2003) Areal and synaptic interconnectivity of prelimbic (area 32), infralimbic (area 25) and insular cortices in the rat. Brain Res 993:59–71

    Article  PubMed  CAS  Google Scholar 

  • Gais S, Born J (2004) Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation. Proc Natl Acad Sci U S A 101:2140–2144

    Article  PubMed  CAS  Google Scholar 

  • Gais S, Molle M, Helms K, Born J (2002) Learning-dependent increases in sleep spindle density. J Neurosci 22:6830–6834

    PubMed  CAS  Google Scholar 

  • Genzen JR, McGehee DS (2003) Short- and long-term enhancement of excitatory transmission in the spinal cord dorsal horn by nicotinic acetylcholine receptors. Proc Natl Acad Sci U S A 100:6807–6812

    Article  PubMed  CAS  Google Scholar 

  • Gil Z, Connors BW, Amitai Y (1997) Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 19:679–686

    Article  PubMed  CAS  Google Scholar 

  • Gilbert D, McClernon J, Rabinovich N, Sugai C, Plath L, Asgaard G, Zuo Y, Huggenvik J, Botros N (2004) Effects of quitting smoking on EEG activation and attention last for more than 31 days and are more severe with stress, dependence, DRD2 A1 allele, and depressive traits. Nicotine Tob Res 6:249–267

    Article  PubMed  CAS  Google Scholar 

  • Gioanni Y, Rougeot C, Clarke PB, Lepouse C, Thierry AM, Vidal C (1999) Nicotinic receptors in the rat prefrontal cortex: increase in glutamate release and facilitation of mediodorsal thalamo-cortical transmission. Eur J Neurosci 11:18–30

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14:477–485

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363–396

    Article  PubMed  CAS  Google Scholar 

  • Granon S, Poucet B, Thinus-Blanc C, Changeux JP, Vidal C (1995) Nicotinic and muscarinic receptors in the rat prefrontal cortex: differential roles in working memory, response selection and effortful processing. Psychopharmacology (Berl) 119:139–144

    Article  CAS  Google Scholar 

  • Granon S, Faure P, Changeux JP (2003) Executive and social behaviors under nicotinic receptor regulation. Proc Natl Acad Sci U S A 100:9596–9601

    Article  PubMed  CAS  Google Scholar 

  • Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383:713–716

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Uylings HB (2000) The prefrontal cortex and the integration of sensory, limbic and autonomic information. Prog Brain Res 126:3–28

    PubMed  CAS  Google Scholar 

  • Hahn B, Shoaib M, Stolerman IP (2003) Involvement of the prefrontal cortex but not the dorsal hippocampus in the attention-enhancing effects of nicotine in rats. Psychopharmacology (Berl) 168:271–279

    Article  CAS  Google Scholar 

  • Han ZY, Zoli M, Cardona A, Bourgeois JP, Changeux JP, Le Novere N (2003) Localization of [3H]nicotine, [3H]cytisine, [3H]epibatidine, and [125I]alpha-bungarotoxin binding sites in the brain of Macaca mulatta. J Comp Neurol 461:49–60

    Article  PubMed  CAS  Google Scholar 

  • Harris JG, Kongs S, Allensworth D, Martin L, Tregellas J, Sullivan B, Zerbe G, Freedman R (2004) Effects of nicotine on cognitive deficits in schizophrenia. Neuropsychopharmacology 29:1378–1385

    Article  PubMed  CAS  Google Scholar 

  • Havermans RC, Debaere S, Smulders FT, Wiers RW, Jansen AT (2003) Effect of cue exposure, urge to smoke, and nicotine deprivation on cognitive performance in smokers. Psychol Addict Behav 17:336–339

    Article  PubMed  Google Scholar 

  • Hogg RC, Raggenbass M, Bertrand D (2003) Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol 147:1–46

    PubMed  CAS  Google Scholar 

  • Houser CR, Crawford GD, Salvaterra PM, Vaughn JE (1985) Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: a study of cholinergic neurons and synapses. J Comp Neurol 234:17–34

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen RB, Ulrich D, Huguenard JR (2001) GABA(B) and NMDA receptors contribute to spindle-like oscillations in rat thalamus in vitro. J Neurophysiol 86:1365–1375

    PubMed  CAS  Google Scholar 

  • Jacobsen LK, D'Souza DC, Mencl WE, Pugh KR, Skudlarski P, Krystal JH (2004) Nicotine effects on brain function and functional connectivity in schizophrenia. Biol Psychiatry 55:850–858

    Article  PubMed  CAS  Google Scholar 

  • Jakala P, Puolivali J, Bjorklund M, Koivisto E, Riekkinen P Jr (1997) Activation of acetylcholine receptors and 5-HT2 receptors have additive effects in the suppression of neocortical high-voltage spindles in aged rats. Psychopharmacology (Berl) 132:270–280

    Article  CAS  Google Scholar 

  • Jay TM, Witter MP (1991) Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 313:574–586

    Article  PubMed  CAS  Google Scholar 

  • Ji D, Dani JA (2000) Inhibition and disinhibition of pyramidal neurons by activation of nicotinic receptors on hippocampal interneurons. J Neurophysiol 83:2682–2690

    PubMed  CAS  Google Scholar 

  • Ji D, Lape R, Dani JA (2001) Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron 31:131–141

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Yakel JL (1997) Functional nicotinic ACh receptors on interneurones in the rat hippocampus. J Physiol 504(Pt 3):603–610

    Article  PubMed  CAS  Google Scholar 

  • Jones IW, Wonnacott S (2004) Precise localization of alpha7 nicotinic acetylcholine receptors on glutamatergic axon terminals in the rat ventral tegmental area. J Neurosci 24:11244–11252

    Article  PubMed  CAS  Google Scholar 

  • Kadoya C, Domino EF, Matsuoka S (1994) Relationship of electroencephalographic and cardiovascular changes to plasma nicotine levels in tobacco smokers. Clin Pharmacol Ther 55:370–377

    Article  PubMed  CAS  Google Scholar 

  • Katner SN, Davis SA, Kirsten AJ, Taffe MA (2004) Effects of nicotine and mecamylamine on cognition in rhesus monkeys. Psychopharmacology (Berl) 175:225–240

    CAS  Google Scholar 

  • Kawaguchi Y (1993) Groupings of nonpyramidal and pyramidal cells with specific physiological and morphological characteristics in rat frontal cortex. J Neurophysiol 69:416–431

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y (1995) Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex. J Neurosci 15:2638–2655

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Kubota Y (1996) Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex. J Neurosci 16:2701–2715

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7:476–486

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Kondo S (2002) Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol 31:277–287

    Article  PubMed  Google Scholar 

  • Klink R, de Kerchove d'Exaerde A, Zoli M, Changeux JP (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 21:1452–1463

    PubMed  CAS  Google Scholar 

  • Kumari V, Gray JA, Ffytche DH, Mitterschiffthaler MT, Das M, Zachariah E, Vythelingum GN, Williams SC, Simmons A, Sharma T (2003) Cognitive effects of nicotine in humans: an fMRI study. NeuroImage 19:1002–1013

    Article  PubMed  Google Scholar 

  • Lambe EK, Picciotto MR, Aghajanian GK (2003) Nicotine induces glutamate release from thalamocortical terminals in prefrontal cortex. Neuropsychopharmacology 28:216–225

    Article  PubMed  CAS  Google Scholar 

  • Lambert NM, Hartsough CS (1998) Prospective study of tobacco smoking and substance dependencies among samples of ADHD and non-ADHD participants. J Learn Disabil 31:533–544

    PubMed  CAS  Google Scholar 

  • Lawrence NS, Ross TJ, Stein EA (2002) Cognitive mechanisms of nicotine on visual attention. Neuron 36:539–548

    Article  PubMed  CAS  Google Scholar 

  • Lena C, Changeux JP (1997) Role of Ca2+ ions in nicotinic facilitation of GABA release in mouse thalamus. J Neurosci 17:576–585

    PubMed  CAS  Google Scholar 

  • Lena C, Changeux JP, Mulle C (1993) Evidence for “preterminal” nicotinic receptors on GABAergic axons in the rat interpeduncular nucleus. J Neurosci 13:2680–2688

    PubMed  CAS  Google Scholar 

  • Levin ED (2002) Nicotinic receptor subtypes and cognitive function. J Neurobiol 53:633–640

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Simon BB (1998) Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology (Berl) 138:217–230

    Article  CAS  Google Scholar 

  • Lindgren M, Molander L, Verbaan C, Lunell E, Rosen I (1999) Electroencephalographic effects of intravenous nicotine—a dose–response study. Psychopharmacology (Berl) 145:342–350

    Article  CAS  Google Scholar 

  • Lohr JB, Flynn K (1992) Smoking and schizophrenia. Schizophr Res 8:93–102

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Marks MJ, Collins AC (1999) Desensitization of nicotinic agonist-induced [3H]gamma-aminobutyric acid release from mouse brain synaptosomes is produced by subactivating concentrations of agonists. J Pharmacol Exp Ther 291:1127–1134

    PubMed  CAS  Google Scholar 

  • Luetje CW, Patrick J, Seguela P (1990) Nicotine receptors in the mammalian brain. FASEB J 4:2753–2760

    PubMed  CAS  Google Scholar 

  • MacDermott AB, Role LW, Siegelbaum SA (1999) Presynaptic ionotropic receptors and the control of transmitter release. Annu Rev Neurosci 22:443–485

    Article  PubMed  CAS  Google Scholar 

  • Maggi L, Le Magueresse C, Changeux JP, Cherubini E (2003) Nicotine activates immature “silent” connections in the developing hippocampus. Proc Natl Acad Sci U S A 100:2059–2064

    Article  PubMed  CAS  Google Scholar 

  • Maggi L, Sola E, Minneci F, Le Magueresse C, Changeux JP, Cherubini E (2004) Persistent decrease in synaptic efficacy induced by nicotine at Schaffer collateral-CA1 synapses in the immature rat hippocampus. J Physiol 559:863–874

    PubMed  CAS  Google Scholar 

  • Mann EO, Greenfield SA (2003) Novel modulatory mechanisms revealed by the sustained application of nicotine in the guinea-pig hippocampus in vitro. J Physiol 551:539–550

    Article  PubMed  CAS  Google Scholar 

  • Mann EO, Paulsen O (2005) Mechanisms underlying gamma (‘40 Hz’) network oscillations in the hippocampus—a mini-review. Prog Biophys Mol Biol 87:67–76

    Article  PubMed  Google Scholar 

  • Mann EO, Suckling JM, Hajos N, Greenfield SA, Paulsen O (2005) Perisomatic feedback inhibition underlies cholinergically induced fast network oscillations in the rat hippocampus in vitro. Neuron 45:105–117

    Article  PubMed  CAS  Google Scholar 

  • Mansvelder HD, McGehee DS (2000) Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27:349–357

    Article  PubMed  CAS  Google Scholar 

  • Mansvelder HD, McGehee DS (2002) Cellular and synaptic mechanisms of nicotine addiction. J Neurobiol 53:606–617

    Article  PubMed  CAS  Google Scholar 

  • Mansvelder HD, Keath JR, McGehee DS (2002) Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 33:905–919

    Article  PubMed  CAS  Google Scholar 

  • Mansvelder HD, De Rover M, McGehee DS, Brussaard AB (2003) Cholinergic modulation of dopaminergic reward areas: upstream and downstream targets of nicotine addiction. Eur J Pharmacol 480:117–123

    Article  PubMed  CAS  Google Scholar 

  • Martin LF, Kem WR, Freedman R (2004) Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology (Berl) 174:54–64

    CAS  Google Scholar 

  • Martin-Ruiz CM, Haroutunian VH, Long P, Young AH, Davis KL, Perry EK, Court JA (2003) Dementia rating and nicotinic receptor expression in the prefrontal cortex in schizophrenia. Biol Psychiatry 54:1222–1233

    Article  PubMed  CAS  Google Scholar 

  • McGaughy J, Dalley JW, Morrison CH, Everitt BJ, Robbins TW (2002) Selective behavioral and neurochemical effects of cholinergic lesions produced by intrabasalis infusions of 192 IgG-saporin on attentional performance in a five-choice serial reaction time task. J Neurosci 22:1905–1913

    PubMed  CAS  Google Scholar 

  • McGehee DS, Role LW (1995) Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol 57:521–546

    Article  PubMed  CAS  Google Scholar 

  • McGehee DS, Role LW (1996) Presynaptic ionotropic receptors. Curr Opin Neurobiol 6:342–349

    Article  PubMed  CAS  Google Scholar 

  • McGehee DS, Heath MJ, Gelber S, Devay P, Role LW (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269:1692–1696

    PubMed  CAS  Google Scholar 

  • McQuiston AR, Madison DV (1999) Nicotinic receptor activation excites distinct subtypes of interneurons in the rat hippocampus. J Neurosci 19:2887–2896

    PubMed  CAS  Google Scholar 

  • Mechawar N, Descarries L (2001) The cholinergic innervation develops early and rapidly in the rat cerebral cortex: a quantitative immunocytochemical study. Neuroscience 108:555–567

    Article  PubMed  CAS  Google Scholar 

  • Mechawar N, Watkins KC, Descarries L (2002) Ultrastructural features of the acetylcholine innervation in the developing parietal cortex of rat. J Comp Neurol 443:250–258

    Article  PubMed  CAS  Google Scholar 

  • Metherate R (2004) Nicotinic acetylcholine receptors in sensory cortex. Learn Mem 11:50–59

    Article  PubMed  Google Scholar 

  • Miller EK (2000) The prefrontal cortex and cognitive control. Nat Rev Neurosci 1:59–65

    Article  PubMed  CAS  Google Scholar 

  • Muir JL, Everitt BJ, Robbins TW (1995) Reversal of visual attentional dysfunction following lesions of the cholinergic basal forebrain by physostigmine and nicotine but not by the 5-HT3 receptor antagonist, ondansetron. Psychopharmacology (Berl) 118:82–92

    Article  CAS  Google Scholar 

  • Murray HJ, Muhia MW, Cunningham MO, Davies CH, Whittington MA (2003) Nicotine-induced rhythmic activity in the CA3 region of the rat hippocampus in vitro. Abstract Viewer Society for Neuroscience

  • Newhouse PA, Potter A, Singh A (2004) Effects of nicotinic stimulation on cognitive performance. Curr Opin Pharmacol 4:36–46

    Article  PubMed  CAS  Google Scholar 

  • Passetti F, Dalley JW, O'Connell MT, Everitt BJ, Robbins TW (2000) Increased acetylcholine release in the rat medial prefrontal cortex during performance of a visual attentional task. Eur J Neurosci 12:3051–3058

    Article  PubMed  CAS  Google Scholar 

  • Paylor R, Nguyen M, Crawley JN, Patrick J, Beaudet A, Orr-Urtreger A (1998) Alpha7 nicotinic receptor subunits are not necessary for hippocampal-dependent learning or sensorimotor gating: a behavioral characterization of Acra7-deficient mice. Learn Mem 5:302–316

    PubMed  CAS  Google Scholar 

  • Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM, Fuxe K, Changeux JP (1998) Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177

    Article  PubMed  CAS  Google Scholar 

  • Picciotto MR, Caldarone BJ, King SL, Zachariou V (2000) Nicotinic receptors in the brain. Links between molecular biology and behavior. Neuropsychopharmacology 22:451–465

    CAS  Google Scholar 

  • Pidoplichko VI, DeBiasi M, Williams JT, Dani JA (1997) Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390:401–404

    Article  PubMed  CAS  Google Scholar 

  • Pidoplichko VI, Noguchi J, Areola OO, Liang Y, Peterson J, Zhang T, Dani JA (2004) Nicotinic cholinergic synaptic mechanisms in the ventral tegmental area contribute to nicotine addiction. Learn Mem 11:60–69

    Article  PubMed  Google Scholar 

  • Pierce RC, Reeder DC, Hicks J, Morgan ZR, Kalivas PW (1998) Ibotenic acid lesions of the dorsal prefrontal cortex disrupt the expression of behavioral sensitization to cocaine. Neuroscience 82:1103–1114

    Article  PubMed  CAS  Google Scholar 

  • Porter JT, Cauli B, Tsuzuki K, Lambolez B, Rossier J, Audinat E (1999) Selective excitation of subtypes of neocortical interneurons by nicotinic receptors. J Neurosci 19:5228–5235

    PubMed  CAS  Google Scholar 

  • Potter AS, Newhouse PA (2004) Effects of acute nicotine administration on behavioral inhibition in adolescents with attention-deficit/hyperactivity disorder. Psychopharmacology (Berl) 176:182–194

    CAS  Google Scholar 

  • Quick MW, Lester RA (2002) Desensitization of neuronal nicotinic receptors. J Neurobiol 53:457–478

    Article  PubMed  CAS  Google Scholar 

  • Radcliffe KA, Fisher JL, Gray R, Dani JA (1999) Nicotinic modulation of glutamate and GABA synaptic transmission of hippocampal neurons. Ann N Y Acad Sci 868:591–610

    Article  PubMed  CAS  Google Scholar 

  • Radek RJ (1993) Effects of nicotine on cortical high voltage spindles in rats. Brain Res 625:23–28

    Article  PubMed  CAS  Google Scholar 

  • Rezvani AH, Levin ED (2001) Cognitive effects of nicotine. Biol Psychiatry 49:258–267

    Article  PubMed  CAS  Google Scholar 

  • Riekkinen P Jr, Riekkinen M, Sirvio J, Miettinen R, Riekkinen P (1992) Loss of cholinergic neurons in the nucleus basalis induces neocortical electroencephalographic and passive avoidance deficits. Neuroscience 47:823–831

    Article  PubMed  Google Scholar 

  • Riekkinen P Jr, Riekkinen M, Sirvio J (1993) Effects of nicotine on neocortical electrical activity in rats. J Pharmacol Exp Ther 267:776–784

    PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ (1999) Drug addiction: bad habits add up. Nature 398:567–570

    Article  PubMed  CAS  Google Scholar 

  • Roth N, Battig K (1991) Effects of cigarette smoking upon frequencies of EEG alpha rhythm and finger tapping. Psychopharmacology (Berl) 105:186–190

    Article  CAS  Google Scholar 

  • Rueckert L, Grafman J (1996) Sustained attention deficits in patients with right frontal lesions. Neuropsychologia 34:953–963

    Article  PubMed  CAS  Google Scholar 

  • Rueckert L, Grafman J (1998) Sustained attention deficits in patients with lesions of posterior cortex. Neuropsychologia 36:653–660

    Article  PubMed  CAS  Google Scholar 

  • Saal D, Dong Y, Bonci A, Malenka RC (2003) Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37:577–582

    Article  PubMed  CAS  Google Scholar 

  • Sarter M, Givens B, Bruno JP (2001) The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res Brain Res Rev 35:146–160

    Article  PubMed  CAS  Google Scholar 

  • Schneider JS, Tinker JP, Menzaghi F, Lloyd GK (2003) The subtype-selective nicotinic acetylcholine receptor agonist SIB-1553A improves both attention and memory components of a spatial working memory task in chronic low dose 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys. J Pharmacol Exp Ther 306:401–406

    Article  PubMed  CAS  Google Scholar 

  • Seguela P, Watkins KC, Descarries L (1989) Ultrastructural relationships of serotonin axon terminals in the cerebral cortex of the adult rat. J Comp Neurol 289:129–142

    Article  PubMed  CAS  Google Scholar 

  • Seguela P, Watkins KC, Geffard M, Descarries L (1990) Noradrenaline axon terminals in adult rat neocortex: an immunocytochemical analysis in serial thin sections. Neuroscience 35:249–264

    Article  PubMed  CAS  Google Scholar 

  • Seguela P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13:596–604

    PubMed  CAS  Google Scholar 

  • Stein EA, Pankiewicz J, Harsch HH, Cho JK, Fuller SA, Hoffmann RG, Hawkins M, Rao SM, Bandettini PA, Bloom AS (1998) Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry 155:1009–1015

    PubMed  CAS  Google Scholar 

  • Stevens KE, Freedman R, Collins AC, Hall M, Leonard S, Marks MJ, Rose GM (1996) Genetic correlation of inhibitory gating of hippocampal auditory evoked response and alpha-bungarotoxin-binding nicotinic cholinergic receptors in inbred mouse strains. Neuropsychopharmacology 15:152–162

    Article  PubMed  CAS  Google Scholar 

  • Stevens KE, Kem WR, Mahnir VM, Freedman R (1998) Selective alpha7-nicotinic agonists normalize inhibition of auditory response in DBA mice. Psychopharmacology (Berl) 136:320–327

    Article  CAS  Google Scholar 

  • Stolerman IP, Mirza NR, Shoaib M (1995) Nicotine psychopharmacology: addiction, cognition and neuroadaptation. Med Res Rev 15:47–72

    PubMed  CAS  Google Scholar 

  • Tancredi V, Biagini G, D'Antuono M, Louvel J, Pumain R, Avoli M (2000) Spindle-like thalamocortical synchronization in a rat brain slice preparation. J Neurophysiol 84:1093–1097

    PubMed  CAS  Google Scholar 

  • Tapper AR, McKinney SL, Nashmi R, Schwarz J, Deshpande P, Labarca C, Whiteaker P, Marks MJ, Collins AC, Lester HA (2004) Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization. Science 306:1029–1032

    Article  PubMed  CAS  Google Scholar 

  • Thomas MJ, Beurrier C, Bonci A, Malenka RC (2001) Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat Neurosci 4:1217–1223

    Article  PubMed  CAS  Google Scholar 

  • Todd RD, Lobos EA, Sun LW, Neuman RJ (2003) Mutational analysis of the nicotinic acetylcholine receptor alpha 4 subunit gene in attention deficit/hyperactivity disorder: evidence for association of an intronic polymorphism with attention problems. Mol Psychiatry 8:103–108

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Jefferys JGR, Whittington MA (1999) Fast oscillations in cortical circuits. MIT Press, Cambridge, MA

    Google Scholar 

  • Turrini P, Casu MA, Wong TP, De Koninck Y, Ribeiro-da-Silva A, Cuello AC (2001) Cholinergic nerve terminals establish classical synapses in the rat cerebral cortex: synaptic pattern and age-related atrophy. Neuroscience 105:277–285

    Article  PubMed  CAS  Google Scholar 

  • Umbriaco D, Watkins KC, Descarries L, Cozzari C, Hartman BK (1994) Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: an electron microscopic study in serial sections. J Comp Neurol 348:351–373

    Article  PubMed  CAS  Google Scholar 

  • Umbriaco D, Garcia S, Beaulieu C, Descarries L (1995) Relational features of acetylcholine, noradrenaline, serotonin and GABA axon terminals in the stratum radiatum of adult rat hippocampus (CA1). Hippocampus 5:605–620

    Article  PubMed  CAS  Google Scholar 

  • Ungless MA, Whistler JL, Malenka RC, Bonci A (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411:583–587

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl) 151:99–120

    Article  CAS  Google Scholar 

  • Vidal C, Changeux JP (1993) Nicotinic and muscarinic modulations of excitatory synaptic transmission in the rat prefrontal cortex in vitro. Neuroscience 56:23–32

    Article  PubMed  CAS  Google Scholar 

  • Vizi ES, Kiss JP (1998) Neurochemistry and pharmacology of the major hippocampal transmitter systems: synaptic and nonsynaptic interactions. Hippocampus 8:566–607

    Article  PubMed  CAS  Google Scholar 

  • Whittington MA, Traub RD, Jefferys JG (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373:612–615

    Article  PubMed  CAS  Google Scholar 

  • Williams JH, Kauer JA (1997) Properties of carbachol-induced oscillatory activity in rat hippocampus. J Neurophysiol 78:2631–2640

    PubMed  CAS  Google Scholar 

  • Wonnacott S, Sidhpura N, Balfour DJ (2005) Nicotine: from molecular mechanisms to behaviour. Curr Opin Pharmacol 5:53–59

    Article  PubMed  CAS  Google Scholar 

  • Wooltorton JR, Pidoplichko VI, Broide RS, Dani JA (2003) Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas. J Neurosci 23:3176–3185

    PubMed  CAS  Google Scholar 

  • Yoshikawa T, Watanabe A, Shibuya H, Toru M (1993) Involvement of the fimbria fornix in the initiation but not in the expression of methamphetamine-induced sensitization. Pharmacol Biochem Behav 45:691–695

    Article  PubMed  CAS  Google Scholar 

  • Young JW, Finlayson K, Spratt C, Marston HM, Crawford N, Kelly JS, Sharkey J (2004) Nicotine improves sustained attention in mice: evidence for involvement of the alpha7 nicotinic acetylcholine receptor. Neuropsychopharmacology 29:891–900

    Article  PubMed  CAS  Google Scholar 

  • Zoli M, Jansson A, Sykova E, Agnati LF, Fuxe K (1999) Volume transmission in the CNS and its relevance for neuropsychopharmacology. Trends Pharmacol Sci 20:142–150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Ole Paulsen for critically reading the manuscript and Dr. Lorna Role for discussions. This work was supported by grants from the Netherlands Royal Academy of Sciences (HDM) and Netherlands Organization for Scientific Research (NWO) (HDM, ABB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huibert D. Mansvelder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansvelder, H.D., van Aerde, K.I., Couey, J.J. et al. Nicotinic modulation of neuronal networks: from receptors to cognition. Psychopharmacology 184, 292–305 (2006). https://doi.org/10.1007/s00213-005-0070-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0070-z

Keywords

Navigation