Skip to main content
Log in

Rib Stress Fractures Among Rowers

Definition, Epidemiology, Mechanisms, Risk Factors and Effectiveness of Injury Prevention Strategies

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Rib stress fractures (RSFs) can have serious effects on rowing training and performance and accordingly represent an important topic for sports medicine practitioners. Therefore, the aim of this review is to outline the definition, epidemiology, mechanisms, intrinsic and extrinsic risk factors, injury management and injury prevention strategies for RSF in rowers. To this end, nine relevant books, 140 journal articles, the proceedings of five conferences and two unpublished presentations were reviewed after searches of electronic databases using the keywords ‘rowing’, ‘rib’, ‘stress fracture’, ‘injury’, ‘mechanics’ and ‘kinetics’. The review showed that RSF is an incomplete fracture occurring from an imbalance between the rate of bone resorption and the rate of bone formation. RSF occurs in 8.1–16.4% of elite rowers, 2% of university rowers and 1% of junior elite rowers. Approximately 86% of rowing RSF cases with known locations occur in ribs four to eight, mostly along the anterolateral/lateral rib cage. Elite rowers are more likely to experience RSF than nonelite rowers. Injury occurrence is equal among sweep rowers and scullers, but the regional location of the injury differs. The mechanism of injury is multifactorial with numerous intrinsic and extrinsic risk factors contributing. Posterior-directed resultant forces arising from the forward directed force vector through the arms to the oar handle in combination with the force vector induced by the scapula retractors during mid-drive, or repetitive stress from the external obliques and rectus abdominis in the ‘finish’ position, may be responsible for RSF. Joint hypomobility, vertebral malalignment or low bone mineral density may be associated with RSF. Case studies have shown increased risk associated with amenorrhoea, low bone density or poor technique, in combination with increases in training volume. Training volume alone may have less effect on injury than other factors. Large differences in seat and handle velocity, sequential movement patterns, higher elbow-flexion to knee-extension strength ratios, higher seat-to-handle velocity during the initial drive, or higher shoulder angle excursion may result in RSF. Gearing may indirectly affect rib loading. Increased risk may be due to low calcium, low vitamin D, eating disorders, low testosterone or use of depot medroxyprogesterone injections. Injury management involves 1–2 weeks cessation of rowing with analgesic modalities followed by a slow return to rowing with low-impact intensity and modified pain-free training. Some evidence shows injury prevention strategies should focus on strengthening the serratus anterior, strengthening leg extensors, stretching the lumbar spine, increasing hip joint flexibility, reducing excessive protraction, training with ergometers on slides or floating-head ergometers, and calcium and vitamin D supplementation. Future research should focus on the epidemiology of RSF over 4-year Olympic cycles in elite rowers, the aetiology of the condition, and the effectiveness of RSF prevention strategies for injury incidence and performance in rowing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table I. Contd
Table I. Contd
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Table II

Similar content being viewed by others

References

  1. McBride ME. The role of individual and crew technique in the optimisation of boat velocity in rowing [Ph.D.]. Perth: University of Western Australia, 1998

    Google Scholar 

  2. Schneider E, Angst F, Brandt JD. Biomechanics in rowing. In: Asmussen E, Jorgensen K, editors. Biomechanics VI-B. Copenhagen: University Park Press, 1978: 115–9

    Google Scholar 

  3. Christiansen E, Kanstrup IL. Increased risk of stress fractures of the ribs in elite rowers. Scand J Med Sci Sports 1997; 7 (1): 49–52

    Article  PubMed  CAS  Google Scholar 

  4. Dragoni S, Giombini A, Di Cesare A, et al. Stress fractures of the ribs in elite competitive rowers: a report of nine cases. Skeletal Radiol 2007; 36 (10): 951–4

    Article  PubMed  CAS  Google Scholar 

  5. Hickey GJ, Fricker PA, McDonald WA. Injuries to elite rowers over a 10-yr period. Med Sci Sports Exerc 1997; 29 (12): 1567–72

    Article  PubMed  CAS  Google Scholar 

  6. Karlson KA. Rib stress fractures in elite rowers: a case series and proposed mechanism. Am J Sports Med 1998; 26 (4): 516–9

    PubMed  CAS  Google Scholar 

  7. Smoljanović T, Bojanić I, Hannafin JA, et al. Traumatic and overuse injuries among international elite junior rowers. Am J Sports Med 2009; 37 (6): 1193–9

    Article  PubMed  Google Scholar 

  8. Wilson F, Gissane C, Simms C, et al. A 12 month prospective cohort study of injury in international rowers. BrJ Sports Med 2010; 44 (3): 207–14

    Article  CAS  Google Scholar 

  9. Iwamoto J, Takeda T. Stress fractures in athletes: review of 196 cases. J Orthop Sci 2003; 8 (3): 273–8

    Article  PubMed  Google Scholar 

  10. McDonnell L, Hume PA, Nolte V. Occurrence rates of rib stress fractures among New Zealand’s rowing squads: atechnical report for Rowing New Zealand. Auckland: Instituteof Sport and Recreation Research New Zealand, 2009 Oct

    Google Scholar 

  11. Reid RA, Fricker PA, Kestermann O, et al. A profile of female rowers’ injuries and illnesses at the Australian Instituteof Sport. Excel 1989 Jun; 5 (4): 17–20

    Google Scholar 

  12. Bojanic I, Desnica N. Stress fracture of the sixth rib in an elite athlete. Croat Med J 1998; 39 (4): 458–60

    PubMed  CAS  Google Scholar 

  13. Smoljanović T, Bojanić I, Troha I, et al. Rib stress fractures in rowers: Three case reports and a review of literature [inCroation]. Lijec Vjesn 2007; 129: 327–32

    PubMed  Google Scholar 

  14. Brukner P, Khan K. Stress fracture of the neck of the seventh and eighth ribs: a case report. Clin J Sport Med 1996; 6 (3): 204–6

    Article  PubMed  CAS  Google Scholar 

  15. Galilee-Belfer A, Guskiewicz KM. Stress fracture of the eighth rib in a female collegiate rower: a case report. J Athl Train 2000; 35 (4): 445–9

    PubMed  CAS  Google Scholar 

  16. Goldberg B, Pecora C. Stress fractures: a risk of increased training in freshman. Phys Sportsmed 1994; 22 (3) 68–78

    Google Scholar 

  17. Holden DL, Jackson DW. Stress fracture of the ribs in female rowers. Am J Sports Med 1985; 13 (5): 342–7

    Article  PubMed  CAS  Google Scholar 

  18. McKenzie DC. Stress fracture of the rib in an elite oarsman. Int J Sports Med 1989; 10 (3): 220–2

    Article  PubMed  CAS  Google Scholar 

  19. Palierne C, Lacoste A, Souveton D. Stress fractures in highperformance oarsmen and oarswomen: a series of 12 ribfractures. J Traumatel Sport 1997; 14: 227–34

    Google Scholar 

  20. Sinha AK, Kaeding CC, Wadley GM. Upper extremity stress fractures in athletes: clinical features of 44 cases. ClinJ Sport Med 1999; 9 (4): 199–202

    Article  CAS  Google Scholar 

  21. Vinther A, Kanstrup IL, Christiansen E, et al. Exerciseinduced rib stress fractures: influence of reduced bone mineraldensity. Scand J Med Sci Sports 2005; 15 (2): 95–9

    Article  PubMed  Google Scholar 

  22. Wajswelner H, Bennell K, Story I, et al. Muscle action and stress on the ribs in rowing. Phys Ther Sport 2000; 1 (3): 75–84

    Article  Google Scholar 

  23. Warden SJ, Gutschlag FR, Wajswelner H, et al. Aetiology of rib stress fractures in rowers. Sports Med 2002; 32 (13): 819–36

    Article  PubMed  Google Scholar 

  24. Cosca DD, Navazio F. Common problems in endurance athletes. Am Fam Physician 2007; 76 (2): 237–44

    PubMed  Google Scholar 

  25. Whiting WC, Zernicke RF. Biomechanics of musculoskeletal injury. Champaign (IL): Human Kinetics, 1998

    Google Scholar 

  26. Rumball JS, Lebrun CM, Di Ciacca SR, et al. Rowing injuries. Sports Med 2005; 35 (6): 537–55

    Article  PubMed  Google Scholar 

  27. Smoljanović T, Bojanić I. Ewing’s sarcoma in the rib of a rower: a case report. Clin J Sport Med 2007; 17 (6): 510–2

    Article  PubMed  Google Scholar 

  28. Lee E, Worsley DF. Role of radionuclide imaging in the orthopedic patient. Orthop Clin North Am 2006; 37 (3): 485–501

    Article  PubMed  Google Scholar 

  29. Coady CM, Micheli LJ. Stress fractures in the pediatric athlete. Clin Sports Med 1997; 16 (2): 225–38

    Article  PubMed  CAS  Google Scholar 

  30. Connolly LP, Connolly SA. Rib stress fractures. Clin Nucl Med 2004; 29 (10): 614–6

    Article  PubMed  Google Scholar 

  31. Jenkins D, editor. Hollins head’s functional anatomy of the limbs and back. 8th ed. Philadelphia (PA): W.B. Saunders Co., 2002

    Google Scholar 

  32. Gregory PL, Biswas AC, Batt ME. Musculoskeletal problems of the chest wall in athletes. Sports Med 2002; 32 (4): 235–50

    Article  PubMed  Google Scholar 

  33. Wajswelner H. Management of rowers with rib stress fractures. Aust J Physiother 1996; 42 (2): 157–61

    PubMed  Google Scholar 

  34. Vinther A, Kanstrup IL, Christiansen E, et al. Exerciseinduced rib stress fractures: potential risk factors related tothoracic muscle co-contraction and movement pattern. Scand J Med Sci Sports 2006; 16 (3): 188–96

    Article  PubMed  CAS  Google Scholar 

  35. Warden S, Rath D, Smith M, et al. Rib bone strain and muscle activity in the aetiology of rib stress fractures inrowers [abstract no. RR-PL-1514]. Proceedings of the 14th International Congress of the World Confederation for Physical Therapy; 2003 Jun 7-12; Barcelona

    Google Scholar 

  36. Kendall FP, McCreary EK, Provance PG. Muscles: testing and function, with posture and pain. Philadelphia (PA): Lippincott Williams & Wilkins, 2005

    Google Scholar 

  37. Caldwell JS, McNair PJ, Williams M. The effects of repetitive motion on lumbar flexion and erector spinaemuscle activity in rowers. Clin Biomech 2003; 18 (8): 704–11

    Article  Google Scholar 

  38. Kenyon CM, Cala SJ, Yan S, et al. Rib cage mechanics during quiet breathing and exercise in humans. J Appl Physiol 1997; 83: 1242–55

    PubMed  CAS  Google Scholar 

  39. Ward ME, Ward JW, Macklem PT. Analysis of human chest wall motion using a two-compartment rib cage model. J Appl Physiol 1992; 72: 1338–47

    PubMed  CAS  Google Scholar 

  40. Lanini B, Bianchi R, Binazzi B, et al. Chest wall kinematics during cough in healthy subjects. Acta Physiol 2007; 190: 351–8

    Article  CAS  Google Scholar 

  41. Lanini B, Masolini M, Bianchi R, et al. Chest wall kinematics during voluntary cough in neuromuscular patients. Respir Physiol Neurobiol 2007; 161 (1): 62–8

    Article  PubMed  Google Scholar 

  42. Lariviere JA, Robinson TL, Snow CM. Spine bone mineral density increases in experienced but not novice collegiatefemale rowers. Med Sci Sports Exerc 2003; 35 (10): 1740–4

    Article  PubMed  Google Scholar 

  43. Lappe J, Cullen D, Haynatzki G, et al. Calcium and vitaminD supplementation decreases incidence of stress fractures infemale navy recruits. J Bone Miner Res 2008; 23 (5): 741–9

    Article  PubMed  CAS  Google Scholar 

  44. Scholes D, LaCroix AZ, Ichikawa LE, et al. Injectable hormone contraception and bone density: results from a prospectivestudy. Epidemiology 2002; 13: 581–7

    Article  PubMed  Google Scholar 

  45. Morris FL, Payne WR, Wark JD. The impact of intense training on endogenous estrogen and progesterone concentrationsand bone mineral acquisition in adolescentrowers. Osteoporos Int 1999; 10 (5): 361–8

    Article  PubMed  CAS  Google Scholar 

  46. Vinther A, Kanstrup I-L, Christiansen E, et al. Testosterone and BMD in elite male lightweight rowers. Int J Sports Med 2008; 29 (10): 803–7

    Article  PubMed  CAS  Google Scholar 

  47. Torres-Moreno R, Tanaka C, Penney KL. Joint excursion, handle velocity, and applied force: a biomechanical analysisof ergonometric rowing. Int J Sports Med 2000; 21 (1): 41–4

    Article  PubMed  CAS  Google Scholar 

  48. Kleshnev V, Kleshnev I. Dependence of rowing performance and efficiency on motor coordination of the main bodysegments. J Sports Sci 1998; 16 (5): 418–9

    Google Scholar 

  49. Soper C, Hume PA. Towards an ideal rowing technique for performance. Sports Med 2004; 34 (12): 825–48

    Article  PubMed  Google Scholar 

  50. Nolte V. Rowing faster. Champaign (IL): Human Kinetics, 2005

    Google Scholar 

  51. Bernstein IA, Webber O, Woledge R. An ergonomic comparison of rowing machine designs: possible implicationsfor safety. Br J Sports Med 2002; 36 (2): 108–12

    Article  PubMed  CAS  Google Scholar 

  52. Oda I, Abumi K, Lu D, et al. Biomechanical role of the posterior elements, costovertebral joints, and rib cage in thestability of the thoracic spine. Spine 1996; 21 (12): 1423–9

    Article  PubMed  CAS  Google Scholar 

  53. Vinther A, Alkjaer T, Kanstrup IL, et al. Ergometer rowing in slides: implications for injury risk. Br J Sports Med 2008; 42 (6): 545–6

    Google Scholar 

  54. Holsgaard-Larsen A, Jensen K. Ergometer rowing with and without slides. Int J Sports Med 2010; 31 (12): 870–4

    Article  PubMed  CAS  Google Scholar 

  55. Colloud F, Bahuaud P, Doriot N, et al. Fixed versus freefloating stretcher mechanism in rowing ergometers: mechanicalaspects. J Sports Sci 2006; 24 (5): 479–93

    Article  PubMed  CAS  Google Scholar 

  56. Berger FH, de Jonge MC, Maas M. Stress fractures in the lower extremity: the importance of increasing awarenessamongst radiologists. Eur J Radiol 2007; 62 (1): 16–26

    Article  PubMed  Google Scholar 

  57. Holick MF. McCollum Award Lecture, 1994: Vitamin Dnew horizons for the 21st century. AmJ Clin Nutr 1994; 60: 619–30

    CAS  Google Scholar 

  58. Frusztajer NT, Dhuper S, Warren MP, et al. Nutrition and the incidence of stress fractures in ballet dancers. Am J Clin Nutr 1990; 51 (5): 779–83

    PubMed  CAS  Google Scholar 

  59. Wheeler P, Batt M. Do non-steroidal anti-inflammatory drugs adversely affect stress fracture healing? A short review. Br J Sports Med 2005; 39 (2): 65–9

    Article  PubMed  CAS  Google Scholar 

  60. Bennell KL, Brukner PD. Epidemiology and site specificity of stress fractures. Clin Sports Med 1997; 16 (2): 179–96

    Article  PubMed  CAS  Google Scholar 

  61. Snyder RA, Koester MC, Dunn WR. Epidemiology of stress fractures. Clin Sports Med 2006; 25 (1): 37–52

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Auckland University of Technology funded this review via the Vice-Chancellor’s Doctoral Scholarship awarded to Lisa K. McDonnell. The authors have no conflicts of interest relevant to the content of this review. The authors also gratefully acknowledge Dr Chris Milne (Rowing New Zealand Medical Director) for providing advice on medical aspects of this paper.

There are no competing interests by the authors. The corresponding author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive license (or nonexclusive for government employees) on a worldwide basis to the journal editor to permit this article (if accepted) to be published in the journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa K. McDonnell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonnell, L.K., Hume, P.A. & Nolte, V. Rib Stress Fractures Among Rowers. Sports Med 41, 883–901 (2011). https://doi.org/10.2165/11593170-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11593170-000000000-00000

Keywords

Navigation