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Epigenetics and prenatal
influences on asthma and
allergic airways disease

Educational aims
N Describe how genetic studies have explained a small portion of asthma heritability
N Discuss how epigenetic marks are influenced by the environment and are important

in T-cell lineage differentiation
N Describe animal studies of the role of DNA methylation in the development of

allergic airway disease

N Summarise human studies on the role of DNA methylation in asthma and allergy

Introduction

Asthma is a complex, heritable disease that
has been increasing in prevalence, incidence
and severity [1], although recent evidence
suggests that the prevalence of asthma and
allergies may have come to a plateau in
developed countries [2]. Several separate
lines of evidence support a role for epige-
netics in asthma. First, asthma, like epige-
netic mechanisms, is heritable. While asthma
is a strongly familial condition (36–79%
heritability) with a non-Mendelian pattern of
inheritance and polymorphisms in more than
100 genes [3–6], these associations have
infrequently been replicated and genetics

has explained only a small portion of the

aetiology of this disease [4]. Second, asthma,
like epigenetic mechanisms, shows a parent-
of-origin transmission of inheritance with an

affected mother significantly more likely to
transmit the disease than an affected father

[7]. These parent-of-origin effects may result
from immune interactions between the fetus

and the mother [8]. Alternatively, the maternal
effect may be the result of epigenetically

regulated genomic imprinting [9]. Several
known genes show parent-of-origin effects
on allergic disease; these genes include the

FceRI-b locus [10], and the Spink5 gene [11].
Third, asthma, like epigenetic mechanisms

[12, 13], is affected by in utero exposures
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[14, 15]. Prenatal exposure to maternal and
grand-maternal cigarette smoke [16–18] and
traffic-related air pollution [19, 20] are among
in utero exposures that contribute to the
development of this disease. By contrast,
higher maternal fruit and vegetable intake
and oily fish consumption during gestation
have been associated with a lower risk of
asthma [21]. Fourth, asthma, like epigenetics,
is influenced by the general environment [22].
Environmental factors are known to play
important roles in the pathogenesis of
asthma, both in terms of main effects and
those exerted indirectly through complex
interactions with gene variants [23]. The
dramatic increase in the prevalence, incid-
ence and severity of asthma over the past
20 years provides strong evidence that expo-
sures, including diet, play an important role
in the development of this disease; these
changes have occurred too rapidly to be
accounted for by changes in primary DNA
sequence alone. While allergens are classic-
ally associated with asthma [24], many other
exposures, including smoking behaviour
[23, 25], are associated with the development
and progression of this disease, and several
of these agents have been shown to alter
epigenetic marks. Finally, asthma is an
immune-mediated disease characterised
mainly by skewing toward a T-helper cell
(Th)2 phenotype although other T-cell sub-
types may be involved [26]. Epigenetic
mechanisms regulate expression of transcrip-
tion factors that are involved in T-cell
differentiation (Th1, Th2, and regulatory
T-cells (Tregs) [27–34].

The role of the environment
and in utero exposures in
modulating the epigenome

Unlike an individual’s genetic make-up,
epigenetic marks can be influenced much
more easily by exposures, diet and ageing.
Randy Jirtle’s seminal experiments in mice
showed that maternal diet supplemented
with methyl donors (folic acid, vitamin B12,
choline and betaine) shifts coat colour
distribution of progeny towards the brown
pseudoagouti phenotype and that this shift in
coat colour resulted from an increase in DNA
methylation in a transposon adjacent to
the agouti gene [12, 13]. These studies also

revealed that mice with yellow coat colour are
obese and develop cancer, suggesting for the
first time that changes in DNA methylation
caused by diet in utero may be linked to
disease development. Other studies have
shown that pesticides and fungicides can
alter the methylome resulting in changes in
male fertility [35], and that ageing is also
associated with changes in DNA methylation
and gene expression [36, 37]. The concepts
associated with environmental epigenetics
were reviewed recently [38].

More recent evidence suggests that envir-
onmental exposures relevant to the devel-
opment of asthma, such as air pollution and
cigarette smoke, also affect the epigenome.
Decreased DNA methylation in peripheral
blood (as measured by LINE-1 repeats) was
found to be associated with exposure to
particulate matter with an aerodynamic dia-
meter ,2.5 mm (PM2.5) amongst 718 elderly
individuals in the Boston area [39] and
although this correlated with time-dependent
variables such as day of the week and season,
there was no association with air pollution-
related health effects. Another study demon-
strated that hypomethylation of the iNOS
(Nos2) promoter in buccal cells was asso-
ciated with exhaled nitric oxide (NO) levels
and PM2.5 exposure among 940 participants
in the Children’s Health Study [40]. Several
epidemiological studies have examined the
relationship between exposure to cigarette
smoke and epigenetic marks. Among 384
children, a global reduction in DNA methyla-
tion, as measured by the extent of methyla-
tion of Alu repeats and differential
methylation of 8 specific CpG motifs, was
found to be associated with in utero smoke
exposure [41]. 15 specific genomic loci were
significantly associated with current smoking,
two with cumulative smoke exposure and
three with time since quitting cigarettes in
1085 individuals enrolled in the International
COPD Genetics Network and validated in the
Boston Early-Onset COPD study (n5369) [42].

In addition to influencing epigenetic
marks as a result of direct exposure, in utero
exposure to components of air pollution or
cigarette smoke results in changes in global
and site-specific DNA methylation. Maternal
exposure to benzo(a)pyrene, a representative
airborne polycyclic aromatic hydrocarbon,
was associated with hypermethylation of
interferon (IFN)-c in cord blood DNA from
53 participants in the Columbia Center for
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Children’s Environmental Health cohort [43].
In another study, global hypomethylation has
been associated with maternal smoking and
cotinine levels in the umbilical cord blood
from 30 newborns [44]. In a birth cohort of 90
women, born 1959–1963 in New York City,
prenatal tobacco exposure, measured at the
time of pregnancy and not retrospectively
reported, was associated with a decrease in
Sat2 methylation, but not LINE-1 or Alu
methylation [45]. Examination of two differ-
entially methylated regions (DMRs) regulat-
ing two imprinted loci (H19 and Igf2) in
infants born to 418 pregnant women demon-
strated that infants born to smokers had
higher methylation at the Igf2 DMR than
those born to never-smokers or those who
quit during pregnancy (no differences were
seen in the H19 DMR) [46]. Similarly, DNA
methylation in Axl, a receptor tyrosine kinase
relevant in cancer and immune function, was
2.3% higher in the peripheral blood of
children exposed to maternal smoking in
utero [47].

Epigenetic marks and the
immune system

A substantial body of evidence suggests that
epigenetic mechanisms affect the expression
of cytokines and binding of transcription
factors that control the lineage of Th1, Th2,
and Treg cells. In the context of Th1/Th2
differentiation, the most extensively studied
are the Th1 cytokine IFN-c and the Th2
cytokines interleukin (IL)-4 and IL-13. It has
been shown that de novo DNA methyltrans-
ferase DNMT3A methylates CpG-53 in the Ifng
promoter [27] and cord blood CD4+ cells
enhance the development of Th1 (but not
Th2) lineage through progressive demethyla-
tion of the Ifng promoter [28]. Methylation of
the Ifng promoter was reduced in CD8+ cells
from atopic children in the age range in which
hyperproduction of IFN-c occurs, suggesting
that DNA methylation at this locus may be a
contributing factor in the development of
atopy in children. Differentiation of human
CD4+ cells into the Th2 subtype is accom-
panied by the appearance of DNase I
hypersensitive sites and CpG demethylation
around these DNase I hypersensitive sites
within the IL-4 and IL-13 promoters [29–31].
Extensive studies of the Th2 cytokine locus
control region (LCR) [32] have shown that

rad50 hypersensitive site 7 (RHS7) within the
Th2 cytokine LCR undergoes rapid demethy-
lation during Th2 differentiation [33].

In addition to DNA methylation, histone
modifications are also important in guiding
T-cell differentiation. T-bet and GATA-3 tran-
scription factors control lineage-specific his-
tone acetylation of Ifng and Il4 loci during
Th1/Th2 differentiation [34]. Rapid methyla-
tion of H3K9 and H3K27 residues (repressive
marks) at the Ifng locus was associated with
differentiating Th1 cells, while demethylation
of H3K9 and methylation of H3K27 was
associated with Th2 differentiation. In a study
of human cord blood CD4+ cells, histone
acetylation marks at the proximal Il13 pro-
moter were selectively observed in Th2 cells
[31], suggesting that permissive histone
marks together with DNA demethylation lead
to expression of IL-13 in Th2 cells. In
aggregate, these studies suggest that DNA
methylation and histone modifications are
highly dynamic and represent important
determinants of Th1 and Th2 cell lineages.

Epigenetic mechanisms controlling devel-
opment of Tregs are also beginning to be
explored. Tregs are a unique T-cell lineage
with an important role in immunological
tolerance whose development is primarily
regulated by the transcription factor FOXP3.
Evidence for the role of DNA methylation [48]
and histone modifications [49] in regulation
of FOXP3 expression are summarised in two
reviews [50, 51].

DNA methylation and
asthma: animal studies

Given the evidence for the strong influence
of environmental exposures on epigenetic
marks and the role of epigenetic regulation in
T-cell differentiation, it is becoming clear that
epigenetic changes may be one of the factors
to explain the increasing prevalence of
asthma. Our group hypothesised that these
dietary influences are, at least in part,
mediated by the epigenome. To test this
hypothesis, we conducted a study in which
pregnant female mice were fed either a low or
high methylation diet and progeny were
sensitised and challenged with ovalbumin
[15]. We observed an increase in airway
inflammation, serum IgE and airway hyperre-
sponsiveness (AHR) in pups of mothers who
were fed the high methylation diet compared
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with those of mothers on the low methylation
diet. Furthermore, we demonstrated hyper-
methylation of 82 gene-associated CpG
islands throughout the genome, including
extensive hypermethylation of the promoter
and decreased expression of Runx3, a gene
known to regulate allergic airway disease in
mice. Importantly, we reversed the immune
phenotype by treatment with a demethylating
agent (5-aza-deoxycytidine). Epidemiological
evidence for association of folic acid with the
development of asthma in children has been
mixed [52–56], but it may be that folate
together with other methyl donors in the diet
plays a role in this disease.

Importantly, a direct link between epige-
netic control of the Th2 cytokine locus and
development of allergic airway diseases was
further demonstrated in mice with deficiency
in the Th2 LCR [57]. A more recent study also
identified a DNase I-hypersensitive site 2
(HS2) element in the second intron of the Il4
gene as the strongest of all known Il4
enhancers and showed that this enhancer is
strictly controlled by GATA-3 binding [58].
Moreover, TANAKA et al. [58] propose a new
model in which independent recruitment of
GATA-3 to locus-specific regulatory elements
controls the status of the expression of genes
encoding Th2 cytokines [59].

A number of other animal studies have
since examined DNA methylation in the
context of allergic airway disease. FEDULOV

et al. [60] demonstrated DNA methylation
changes in splenic CD11c+ dendritic cells
from neonate mice born to allergic mothers
(mothers sensitised and challenged with
ovalbumin). BRAND et al. [61] observed in-
creased methylation of the Ifng promoter
(and increased IFN-c cytokine production) in
CD4+ T-lymphocytes after ovalbumin sensiti-
sation challenge. They demonstrated that
methylation of the Ifng promoter is required
for development of allergic airway disease by
using the demethylating agent 5-aza-deoxycy-
tidine and adoptive transfer experiments of
CD4+ T-cells from sensitised/challenged ani-
mals to naı̈ve animals and the reverse [61].
Although both demethylation and adoptive
transfer experiments clearly demonstrate the
importance of methylation marks in CD4+

cells in development of allergic airway dis-
ease, loci other than Ifng may be important in
this process and should be examined. Finally,
DNMT3A, but not DNMT3B, deficiency in
CD4+ lymphocytes (conditional mutant mice)

was shown to result in increased expression
of IL-13 (and other Th2 cytokines), decreased
DNA methylation and changes in H3K27
acetylation/methylation in the IL-13 promoter,
increased airway inflammation and AHR
in the ovalbumin model of allergic airway
disease [61]. This study clearly demonstrates
the role of DNA methylation in controlling
expression of Th2 cytokines and development
of allergic airway disease in mice.

DNA methylation and
asthma: human studies

While animal studies have begun to decipher
the role of epigenetic regulation of gene
expression associated with the development
of allergic airway disease in the lung, several
recent publications in human cohorts have
examined DNA methylation in cells outside of
the lung: peripheral blood [62], buccal cells
[63, 64] and nasal cells [65]. These early
studies have only demonstrated statistical
association of DNA methylation and specific
exposure or asthma phenotype, but have not
elucidated the role of DNA methylation in the
control of gene expression in human asthma.
BRETON et al. [63] demonstrated that DNA
methylation in promoters of two arginase
genes (Arg1 and Arg2) is associated with
exhaled NO in children with asthma from
the Children’s Health Study and indicates a
role for epigenetic regulation of nitric oxide
production. In a pilot study in the Columbia
Center for Children’s Environmental Health
cohort, KURIAKOSE et al. [64] found that iNOS
methylation was not significantly associated
with exhaled NO fraction (FeNO), but was
inversely associated with bronchial NO flux.
This latter study emphasises the importance
of careful selection of clinical parameters
used in the association study. A more recent
study of DNA methylation in nasal cells from
35 asthmatic children aged 8–11 years iden-
tified an inverse association of FeNO and
promoter methylation of both Il6 and iNOS
[65]. Data from two independent pregnancy
cohorts in Spain (discovery and validation)
showed that DNA hypomethylation in Alox12
in peripheral blood of children was associated
with a higher risk of persistent wheezing at
age 4 years [62]. Finally, DNA from cord
blood and whole blood collected at 4.5 years
of age with 46 samples per time point in the
rural birth cohort PASTURE showed changes
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in methylation over time in 15/23 CpG regions
near 10 asthma and atopy candidate genes
[66]. In aggregate, these studies suggest that
DNA methylation in easily obtained samples
(buccal, nasal or peripheral blood cells) may
be a useful biomarker for airway inflam-
mation in paediatric research.

A recent study has also examined DNA
methylation in Foxp3 and Treg function in
peripheral blood from children with and
without asthma and with high and low
exposures to air pollution [67]. Treg-cell
suppression was impaired and Treg-cell
chemotaxis was reduced as a result of
exposure to air pollution. Similarly, a small
study of monozygotic twins discordant for
asthma revealed that Treg cells from
asthmatic discordant twins demonstrated
decreased FOXP3 protein expression and
impaired Treg function that was associated
with increased levels of CpG methylation
within the FOXP3 locus when compared to
their non-asthmatic twin partner. In parallel,
effector T-cells from discordant asthmatic
twins demonstrated increased methylation of
the IFN-c locus, decreased IFN-c expression
and reduced effector T-cell function when
compared to effector T-cells from the non-
asthmatic twin [68]. Changes in DNA methy-
lation have also been associated with the
development of asthma among older smo-
kers in the Lovelace Smokers Cohort.
Comparison of 184 smokers with asthma to
511 smoker controls with a similar smoking
history (chronic obstructive pulmonary
disease cases excluded) identified an
association of DNA methylation in the
protocadherin-20 gene in sputum DNA with
asthma as well as a significant synergi-
stic interaction between methylation of
protocadherin-20 and paired box protein
transcription factor-5a on the odds for
developing asthma [69].

The potential impact of
epigenetics research on
asthma

While we know that inheritance, parent-of-
origin, environment, in utero exposures and
Th2 immunity play important roles in the
aetiology of asthma, there is no well-
developed unifying mechanism accounting
for these aetiological events/triggers.

Although the hygiene hypothesis is appealing
conceptually [1] and ties a number of these
basic aetiological events together, there are
several competing hypotheses (T-cell skew-
ing, infection, diet, obesity, etc.) and none of
them fully account for the complex inter-
action between host and environmental
determinants of asthma. While epigenetic
mechanisms not only provide a unique cause
of asthma, these basic transcriptional con-
trols potentially serve to explain some of the
prevailing hypotheses underlying the devel-
opment of asthma. For example, the hygiene
hypothesis is dependent on activation of
innate immune genes, including genes acti-
vated by the Toll-like receptors; importantly,
epigenetic mechanisms control the activation
of these innate immune genes and, conse-
quently, the extent of the inflammatory
response [70, 71]. Moreover, a recent study
demonstrated that microbes may also oper-
ate by means of epigenetic mechanisms [72].
In this animal study, prenatal administration
of the farm-derived Gram-negative bacterium
Acinetobacter lwoffii F78A prevented the devel-
opment of an asthmatic phenotype in the
progeny and this effect was IFN-c dependent.
Prenatal microbial exposure was also asso-
ciated with a significant protection against
loss of H4 acetylation in the promoter of Ifng,
which was closely associated with IFN-c
expression in CD4+ lymphocytes as well as a
decrease in H4 acetylation at the Il4 pro-
moter. Pharmacological inhibition of H4
acetylation in the offspring abolished the
asthma-protective phenotype. So while epige-
netic mechanisms have the potential of
changing our basic concepts about asthma,
these mechanisms may not only account for
the aetiological events/triggers related to
asthma, but may also help to explain some
of the prevailing hypotheses attributed to this
disease.

Furthermore, identification of critical epi-
genetic marks associated with the devel-
opment of asthma and influenced by
specific environmental factors at certain
time-points, in utero or post-natally, would
allow us to advise on intake of dietary
supplements and limiting harmful exposures
during the critical windows when these
dietary and environmental factors have the
strongest influence on the development of
disease. Understanding the complex interac-
tions between in utero exposures and epige-
netic vulnerability will provide insight into
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future interventions for individuals at risk
for the development of allergic asthma and
may lead to the prevention of this disease
altogether.

However, asthma is a complex disease.
Although epigenetic mechanisms may con-
tribute to the aetiology and pathogenesis of

this disease, there are multiple pieces to the
asthma puzzle. The challenge will be to
understand how genetic variation, transcrip-
tome, epigenetic marks, the environment and
the immune system interface with each other
to result in the development of allergic and
nonallergic forms of asthma.
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