Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • State of the Art
  • Published:

State-of-the-Art

State of the art in conventional mechanical ventilation

Abstract

Despite a shift to noninvasive respiratory support, mechanical ventilation remains an essential tool in the care of critically ill neonates. The availability of a variety of technologically advanced devices with a host of available modes and confusing terminology presents a daunting challenge to the practicing neonatologist. Many of the available modes have not been adequately evaluated in newborn infants and there is paucity of information on the relative merits of those modes that have been studied. This review examines the special challenges of ventilating the extremely low birth weight infants that now constitute an increasing proportion of ventilated infants, attempts to provide a simple functional classification of ventilator modes and addresses the key aspects of synchronized ventilation modes. The rationale for volume-targeted ventilation is presented, the available modes are described and the importance of the open-lung strategy is emphasized. The available literature on volume-targeted modalities is reviewed in detail and general recommendations for their clinical application are provided. Volume guarantee has been studied most extensively and shown to reduce excessively large tidal volumes, decrease incidence of inadvertent hyperventilation, reduce duration of mechanical ventilation and reduce pro-inflammatory cytokines. It remains to be seen whether the demonstrated short-term benefits translate into significant reduction in chronic lung disease. Avoidance of mechanical ventilation by means of early continuous positive airway pressure with or without surfactant administration may still be the most effective way to reduce the risk of lung injury. For babies who do require mechanical ventilation, the combination of volume-targeted ventilation, combined with the open-lung strategy appears to offer the best chance of reducing the risk of bronchopulmonary dysplasia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Keszler M, Durand D . High-frequency ventilation. In: Donn SM, Wiswell T (guest eds). Clinics in Perinatology: Advances in Mechanical Ventilation and Surfactant Therapy. WB Saunders Co: Philadelphia, London, Toronto, Montreal Sydney, Tokyo, Sept 2001; 28 (3): 579–607.

    Google Scholar 

  2. Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet JM, Carlin JB, COIN Trial Investigators. Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med 2008; 358 (7): 700–708. Erratum in: N Engl J Med 2008; 358(14): 1529.

    Article  CAS  PubMed  Google Scholar 

  3. Courtney SE, Barrington KJ . Continuous positive airway pressure and noninvasive ventilation. Clin Perinatol 2007; 34 (1): 73–92.

    Article  PubMed  Google Scholar 

  4. Hutchison AA, Bignall S . Non-invasive positive pressure ventilation in the preterm neonate: reducing endotrauma and the incidence of bronchopulmonary dysplasia. Arch Dis Child Fetal Neonatal Ed 2008; 93 (1): F64–F68.

    Article  CAS  PubMed  Google Scholar 

  5. Stevens TP, Harrington EW, Blennow M, Soll RF . Early surfactant administration with brief ventilation vs selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst Rev 2007; 17 (4): CD003063.

    Google Scholar 

  6. Chatburn RL . Classification of ventilator modes: update and proposal for implementation. Respir Care 2007; 52 (3): 301–323.

    PubMed  Google Scholar 

  7. Singh J, Sinha SK, Clarke P, Byrne S, Donn SM . Mechanical ventilation of very low birth weight infants: is volume or pressure a better target variable? J Pediatr 2006; 149 (3): 308–313.

    Article  PubMed  Google Scholar 

  8. Dimitriou G, Greenough A, Cherian S . Comparison of airway pressure and airflow triggering systems using a single type of neonatal ventilator. Acta Paediatr 2001; 90: 445–447.

    Article  CAS  PubMed  Google Scholar 

  9. Dimitriou G, Greenough A, Laubscher B, Yamaguchi N . Comparison of airway pressure-triggered and airflow-triggered ventilation in very immature infants. Acta Paediatr 1998; 87: 1256–1260.

    Article  CAS  PubMed  Google Scholar 

  10. Beck J, Brander L, Slutsky AS, Reilly MC, Dunn MS, Sinderby C . Non-invasive neurally adjusted ventilatory assist in rabbits with acute lung injury. Intensive Care Med 2008; 34 (2): 316–323.

    Article  PubMed  Google Scholar 

  11. Schulze A, Rieger-Fackeldey E, Gerhardt T, Claure N, Everett R, Bancalari E . Randomized crossover comparison of proportional assist ventilation and patient-triggered ventilation in extremely low birth weight infants with evolving chronic lung disease. Neonatology 2007; 92 (1): 1–7.

    Article  CAS  PubMed  Google Scholar 

  12. Sinderby C, Beck J . Neurally adjusted ventilatory assist (NAVA): an update and summary of experiences. Neth J Crit Care 2007; 11: 243–252.

    Article  Google Scholar 

  13. Mrozek JD, Bendel-Stenzel EM, Meyers PA, Bing DR, Connett JE, Mammel MC . Randomized controlled trial of volume-targeted synchronized ventilation and conventional intermittent mandatory ventilation following initial exogenous surfactant therapy. Pediatr Pulmonol 2000; 29: 11–18.

    Article  CAS  PubMed  Google Scholar 

  14. Chan V, Greenough A . Comparison of weaning by patient triggered ventilation or synchronous mandatory intermittent ventilation. Acta Paediatr 1994; 83: 335–337.

    Article  CAS  PubMed  Google Scholar 

  15. Dimitriou G, Greenough A, Griffin F, Chan V . Synchronous intermittent mandatory ventilation modes compared with patient triggered ventilation during weaning. Arch Dis Child Fetal Neonatal Ed 1995; 72: F188–F190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hummler H, Gerhardt T, Gonzalez A, Claure N, Everett R, Bancalari E . Influence of different methods of synchronized mechanical ventilation on ventilation, gas exchange, patient effort, and blood pressure fluctuations in premature neonates. Pediatr Pulmonol 1996; 22: 305–313.

    Article  CAS  PubMed  Google Scholar 

  17. Dreyfuss D, Saumon G . Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 1993; 148: 1194–1203.

    Article  CAS  PubMed  Google Scholar 

  18. Hernandez LA, Peevy KJ, Moise AA, Parker JC . Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl Physiol 1989; 66 (5): 2364–2368.

    Article  CAS  PubMed  Google Scholar 

  19. Dreyfuss D, Saumon G . Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 1998; 157: 294–323.

    Article  CAS  PubMed  Google Scholar 

  20. Oxford Region Controlled Trial of Artificial Ventilation (OCTAVE). Multicentre randomized controlled trial of high against low frequency positive pressure ventilation. Arch Dis Child 1991; 66: 770–775.

    Article  Google Scholar 

  21. Greenough A, Milner A, Dimitriou G . Synchronized mechanical ventilation for respiratory support in newborn infants. Cochrane Database Syst Rev 2004; CD000456.

  22. Greenough A, Dimitriou G, Prendergast M, Milner AD . Synchronized mechanical ventilation for respiratory support in newborn infants. Cochrane Database Syst Rev 2008; 23: CD000456.

    Google Scholar 

  23. Keszler M, Abubakar KM . Advances in neonatal ventilation. In: Lehman CU, Lawson EE, Nogee LM, Harbold LA (eds). eNeonatal Reviews. Johns Hopkins on-line publication. July 2004: www.hopkinscme.org/ofp/eneonatalreview/previssues0704.html.

  24. Bjorklund LJ, Ingimarsson J, Curstedt T, John J, Robertson B, Werner O et al. Manual ventilation with a few large breaths at birth compromises the therapeutic effect of subsequent surfactant replacement in immature lambs. Pediatr Res 1997; 42: 348–355.

    Article  CAS  PubMed  Google Scholar 

  25. Luyt K, Wright D, Baumer JH . Randomised study comparing extent of hypocarbia in preterm infants during conventional and patient triggered ventilation. Arch Dis Child Fetal Neonatal Ed 2001; 84: F14–F17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Graziani LJ, Spitzer AR, Mitchell DG, Merton DA, Stanley C, Robinson N et al. Mechanical ventilation in preterm infants: neurosonographic and developmental studies. Pediatrics 1992; 90: 515–522.

    CAS  PubMed  Google Scholar 

  27. Fujimoto S, Togari H, Yamaguchi N, Mizutani F, Suzuki S, Sobajima H . Hypocarbia and cystic periventricular leukomalacia in premature infants. Arch Dis Child 1994; 71: F107–F110.

    Article  CAS  Google Scholar 

  28. Wiswell TE, Graziani LJ, Kornhauser MS, Stanley C, Merton DA, McKee L et al. Effects of hypocarbia on the development of cystic periventricular leukomalacia in premature infants treated with high-frequency jet ventilation. Pediatrics 1996; 98: 918–924.

    CAS  PubMed  Google Scholar 

  29. Clark RH, Slutsky AS, Gertsmann DR . Lung protective strategies of ventilation in the neonate: what are they? Pediatrics 2000; 105: 112–114.

    Article  CAS  PubMed  Google Scholar 

  30. Caruso P, Meireles SI, Reis LFL, Mauad T, Martins MA, Deheinzelin D . Low tidal volume ventilation induces proinflammatory and profibrogenic response in lungs of rats. Intensive Care Med 2003; 29: 1808–1811.

    Article  PubMed  Google Scholar 

  31. Tsuchida S, Engelberts D, Peltekova V, Hopkins N, Frndova H, Babyn P et al. Atelectasis causes alveolar injury in nonatelectatic lung regions. Am J Respir Crit Care Med 2006; 174 (3): 279–289.

    Article  PubMed  Google Scholar 

  32. van Kaam AH, de Jaegere A, Haitsma JJ, Van Aalderen WM, Kok JH, Lachmann B . Positive pressure ventilation with the open lung concept optimizes gas exchange and reduces ventilator induced lung injury in newborn piglets. Pediatr Res 2003; 53: 245–253.

    Article  PubMed  Google Scholar 

  33. Gommers D, Hartog A, Schnabel R, De Jaegere A, Lachmann B . High-frequency oscillatory ventilation is not superior to conventional mechanical ventilation in surfactant-treated rabbits with lung injury. Eur Respir J 1999; 14: 738–744.

    Article  CAS  PubMed  Google Scholar 

  34. Vazquez de Anda GF, Hartog A, Verbrugge SJ, Gommers D, Lachmann B . The open lung concept: pressure-controlled ventilation is as effective as high-frequency oscillatory ventilation in improving gas exchange and lung mechanics in surfactant-deficient animals. Intensive Care Med 1999; 25: 990–996.

    Article  CAS  PubMed  Google Scholar 

  35. Vazquez de Anda GF, Gommers D, De Jaegere A, Lachmann B . Mechanical ventilation with high positive end-expiratory pressure and small driving pressure amplitude is as effective as high-frequency oscillatory ventilation to preserve the function of exogenous surfactant in lung-lavaged rats. Crit Care Med 2000; 28: 2921–2925.

    Article  CAS  PubMed  Google Scholar 

  36. van Kaam AH, Dik WA, Haitsma JJ, De Jaegere A, Naber BA, van Aalderen WM et al. Application of the open-lung concept during positive-pressure ventilation reduces pulmonary inflammation in newborn piglets. Biol Neonate 2003; 83 (4): 273–280.

    Article  PubMed  Google Scholar 

  37. van Kaam AH, Rimensberger PC . Lung-protective ventilation strategies in neonatology: what do we know—what do we need to know? Crit Care Med 2007; 35 (3): 925–931.

    Article  PubMed  Google Scholar 

  38. Cannon ML, Cornell J, Tripp-Hamel DS, Gentile MA, Hubble CL, Meliones JN et al. Tidal volumes for ventilated infants should be determined with a pneumotachometer placed at the endotracheal tube. Am J Respir Crit Care Med 2000; 162: 2109–2112.

    Article  CAS  PubMed  Google Scholar 

  39. Chow LC, Vanderhal A, Raber J, Sola A . Are tidal volume measurements in neonatal pressure-controlled ventilation accurate? Pediatr Pulmonol 2002; 34: 196–202.

    Article  PubMed  Google Scholar 

  40. Castle RA, Dunne CJ, Mok Q, Wade AM, Stocks J . Accuracy of displayed values of tidal volume in the pediatric intensive care unit. Crit Care Med 2002; 30 (11): 2566–2574.

    Article  PubMed  Google Scholar 

  41. Sinha SK, Donn SM, Gavey J, McCarty M . Randomised trial of volume controlled versus time cycled, pressure limited ventilation in preterm infants with respiratory distress syndrome. Arch Dis Child Fetal Neonatal Ed 1997; 77: F202–F205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Piotrowski A, Sobala W, Kawczynski P . Patient-initiated, pressure-regulated, volume controlled ventilation compared with intermittent mandatory ventilation in neonates: a prospective, randomised study. Intensive Care Med 1997; 23: 975–981.

    Article  CAS  PubMed  Google Scholar 

  43. D’Angio CT, Chess PR, Kovacs SJ, Sinkin RA, Phelps DL, Kendig JW et al. Pressure-regulated volume control ventilation vs synchronized intermittent mandatory ventilation for very low-birth-weight infants: a randomized controlled trial. Arch Pediatr Adolesc Med 2005; 159: 868–875.

    Article  PubMed  Google Scholar 

  44. Cheema IU, Ahluwalia JS . Feasibility of tidal volume-guided ventilation in newborn infants: a randomized, crossover trial using the volume guarantee modality. Pediatrics 2001; 107: 1323–1328.

    Article  CAS  PubMed  Google Scholar 

  45. Abubakar KM, Keszler M . Patient-ventilator interactions in new modes of patient-triggered ventilation. Pediatr Pulmonol 2001; 32: 71–75.

    Article  CAS  PubMed  Google Scholar 

  46. Herrera CM, Gerhardt T, Claure N, Everett R, Musante G, Thomas C et al. Effects of volume-guaranteed synchronized intermittent mandatory ventilation in preterm infants recovering from respiratory failure. Pediatrics 2002; 110: 529–533.

    Article  PubMed  Google Scholar 

  47. Osorio W, Claure N, D’Ugard C, Athavale K, Bancalari E . Effects of pressure support during an acute reduction of synchronized intermittent mandatory ventilation in preterm infants. J Perinatol 2005; 25 (6): 412–416.

    Article  PubMed  Google Scholar 

  48. Olsen SL, Thibeault DW, Truog WE . Crossover trial comparing pressure support with synchronized intermittent mandatory ventilation. J Perinatol 2002; 22 (6): 461–466.

    Article  PubMed  Google Scholar 

  49. Keszler M, Abubakar KM, Mammel MC . Response to Olsen, et al. study comparing SIMV & PSV. J Perinatol 2003; 23: 434–435.

    Article  PubMed  Google Scholar 

  50. Keszler M, Abubakar KM . Volume guarantee: stability of tidal volume and incidence of hypocarbia. Pediatr Pulmonol 2004; 38: 240–245.

    Article  PubMed  Google Scholar 

  51. Lista G, Colnaghi M, Castoldi F, Condo V, Reali R, Compagnoni G et al. Impact of targeted-volume ventilation on lung inflammatory response in preterm infants with respiratory distress syndrome. Pediatr Pulmonol 2004; 37: 510–514.

    Article  CAS  PubMed  Google Scholar 

  52. Nafday SM, Green RS, Lin J, Brion LP, Ochshorn I, Holzman IR . Is there an advantage of using pressure support ventilation with volume guarantee in the initial management of premature infants with respiratory distress syndrome? A pilot study. J Perinatol 2005; 25: 193–197.

    Article  PubMed  Google Scholar 

  53. Abd El-Moneim ES, Fuerste HO, Krueger M, Elmagd AA, Brandis M, Schulte-Moenting J et al. Pressure support ventilation combined with volume guarantee versus synchronized intermittent mandatory ventilation: a pilot crossover trial in premature infants in their weaning phase. Pediatr Crit Care Med 2005; 6 (3): 286–292.

    Article  PubMed  Google Scholar 

  54. Abubakar K, Keszler M . Effect of volume guarantee combined with assist/control vs synchronized intermittent mandatory ventilation. J Perinatol 2005; 25: 638–642.

    Article  PubMed  Google Scholar 

  55. Dawson C, Davies MW . Volume-targeted ventilation and arterial carbon dioxide in neonates. J Paediatr Child Health 2005; 41 (9–10): 518–521.

    Article  PubMed  Google Scholar 

  56. Lista G, Castoldi F, Fontana P, Reali R, Reggiani A, Bianchi S et al. Lung inflammation in preterm infants with respiratory distress syndrome: effects of ventilation with different tidal volumes. Pediatr Pulmonol 2006; 41: 357–363.

    Article  PubMed  Google Scholar 

  57. Keszler M . Volume guarantee and ventilator-induced lung injury: Goldilocks’ rules apply. Pediatric Pulmonol 2006; 41: 364–366 Comment.

    Article  Google Scholar 

  58. Dani C, Bertini G, Pezzati M, Filippi L, Pratesi S, Caviglioli C et al. Effects of pressure support ventilation plus volume guarantee vs high-frequency oscillatory ventilation on lung inflammation in preterm infants. Pediatr Pulmonol 2006; 41 (3): 242–249.

    Article  PubMed  Google Scholar 

  59. Polimeni V, Claure N, D’Ugard C, Bancalari E . Effects of volume-targeted synchronized intermittent mandatory ventilation on spontaneous episodes of hypoxemia in preterm infants. Biol Neonate 2006; 89 (1): 50–55.

    Article  PubMed  Google Scholar 

  60. Scopesi F, Calevo MG, Rolfe P, Arioni C, Traggiai C, Risso FM et al. Volume targeted ventilation (volume guarantee) in the weaning phase of premature newborn infants. Pediatr Pulmonol 2007; 42 (10): 864–870.

    Article  CAS  PubMed  Google Scholar 

  61. Cheema IU, Sinha AK, Kempley ST, Ahluwalia JS . Impact of volume guarantee ventilation on arterial carbon dioxide tension in newborn infants: a randomized controlled trial. Early Hum Dev 2007; 83 (3): 183–189.

    Article  CAS  PubMed  Google Scholar 

  62. Lista G, Castoldi F, Bianchi S, Battaglioli M, Cavigioli F, Bosoni MA . Volume guarantee versus high-frequency ventilation: lung inflammation in preterm infants. Arch Dis Child Fetal Neonatal Ed 2008; 93 (4): F252–F256.

    Article  CAS  PubMed  Google Scholar 

  63. Nassabeh-Montazami S, Abubakar K, Keszler M . The impact of instrumental dead-space in volume-targeted ventilation of the extremely low birth weight (ELBW) infant. Pediatr Pulmonol 2009; 44: 128–133.

    Article  PubMed  Google Scholar 

  64. Keszler M, Nassabeh-Montazami S, Abubakar K . Evolution of tidal volume requirement during the first three weeks of life in extremely low birth weight infants ventilated with volume-targeted ventilation. Arch Dis Child Fetal Neonatal Ed published online Dec 5, 2008; doi:10.1136/adc.2008.147157 (in press).

  65. McCallion N, Davis PG, Morley CJ . Volume-targeted versus pressure-limited ventilation in the neonate. Cochrane Database Syst Rev 2005; CD003666.

  66. Keszler M, Abubakar KM . Volume guarantee ventilation. In: Donn SM, Wiswell T (guest eds). Clinics in Perinatology: Update on Surfactant and Mechanical Ventilation. Elsevier Press: Philadelphia, March 2007; 34 (1): 107–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Keszler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keszler, M. State of the art in conventional mechanical ventilation. J Perinatol 29, 262–275 (2009). https://doi.org/10.1038/jp.2009.11

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2009.11

Keywords

This article is cited by

Search

Quick links