Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Discovering susceptibility genes for asthma and allergy

Key Points

  • Asthma and asthma-related traits are complex diseases with strong genetic and environmental components.

  • Association and genome-wide linkage studies have identified numerous candidate genes that are associated with asthma-related traits and are involved in innate immunity, T helper 2 cell differentiation and effector functions, epithelial cell biology and lung function.

  • The phenotypic impact of each of these genes, including the ones most often replicated in association studies, is mild, but larger effects may occur when multiple variants synergize within a permissive environmental context.

  • Despite the achievements of asthma genetics, the identification of all the genes involved in disease, the replication of genotype–phenotype associations across populations, and the interactions of genes with environmental and developmental factors, and with one another, still represent formidable challenges.

  • The development of novel, powerful tools for gene discovery, such as genome-wide association studies, and a closer integration with biology, should help asthma geneticists to overcome these challenges.

Abstract

Asthma and asthma-related traits are complex diseases with strong genetic and environmental components. Rapid progress in asthma genetics has led to the identification of several candidate genes that are associated with asthma-related traits. Typically the phenotypic impact of each of these genes, including the ones most often replicated in association studies, is mild, but larger effects may occur when multiple variants synergize within a permissive environmental context. Despite the achievements made in asthma genetics formidable challenges remain. The development of novel, powerful tools for gene discovery, and a closer integration of genetics and biology, should help to overcome these challenges.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Susceptibility genes for asthma and asthma-related traits.
Figure 2: Susceptibility genes for asthma and asthma-related traits.
Figure 3: Distinct variants of IL13 may synergize and increase susceptibility to allergic inflammation.
Figure 4: Gene–environment interactions in human populations.
Figure 5: Effects of gene–gene interactions on asthma susceptibility.
Figure 6: Steps in the genome-wide association study that led to the identification of ORMDL3 as an asthma gene.

Similar content being viewed by others

References

  1. Los, H., Postmus, P. E. & Boomsma, D. I. Asthma genetics and intermediate phenotypes: a review from twin studies. Twin Res. 4, 81–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Cookson, W. O., Sharp, P. A., Faux, J. A. & Hopkin, J. M. Linkage between immunoglobulin E responses underlying asthma and rhinitis and chromosome 11q. Lancet 333, 1292–1295 (1989).

    Article  Google Scholar 

  3. Daniels, S. E. et al. A genome-wide search for quantitative trait loci underlying asthma. Nature 383, 247–250 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Ober, C. & Hoffjan, S. Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun. 7, 95–100 (2006). An excellent review of 10 years of genetics of asthma and asthma-related traits.

    Article  CAS  PubMed  Google Scholar 

  5. Kurz, T. et al. Fine mapping and positional candidate studies on chromosome 5p13 identify multiple asthma susceptibility loci. J. Allergy Clin. Immunol. 118, 396–402 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Carlson, C. S., Eberle, M. A., Kruglyak, L. & Nickerson, D. A. Mapping complex disease loci in whole-genome association studies. Nature 429, 446–452 (2004). A balanced discussion of the toolkit of asthma genetics and the strengths and weaknesses of each major approach.

    Article  CAS  PubMed  Google Scholar 

  8. Cookson, W. The immunogenetics of asthma and eczema: a new focus on the epithelium. Nature Rev. Immunol. 4, 978–988 (2004).

    Article  CAS  Google Scholar 

  9. Wills-Karp, M. & Ewart, S. L. Time to draw breath: asthma-susceptibility genes are identified. Nature Rev. Genet. 5, 376–387 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Bosse, Y. & Hudson, T. J. Toward a comprehensive set of asthma susceptibility genes. Annu. Rev. Med. 58, 171–184 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Guerra, S. & Martinez, F. D. Asthma genetics: from linear to multifactorial approaches. Annu. Rev. Med. 59, 199–213 (2008). A thoughtful discussion of phenotypic heterogeneity and gene–environment interactions in asthma.

    Article  CAS  Google Scholar 

  12. Neale, B. M. & Sham, P. C. The future of association studies: gene-based analysis and replication. Am. J. Hum. Genet. 75, 353–362 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baldini, M. et al. A polymorphism in the 5′ flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum IgE. Am. J. Respir. Cell. Mol. Biol. 20, 976–983 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Eder, W. et al. Toll-like receptor 2 as a major gene for asthma in children of European farmers. J. Allergy Clin. Immunol. 113, 482–488 (2004). Together with references104–107, this paper provides strong evidence for gene–environment interactions in human populations.

    Article  CAS  PubMed  Google Scholar 

  15. Werner, M. et al. TLR4 gene variants modify endotoxin effects on asthma. J. Allergy Clin. Immunol. 112, 323–330 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Fageras Bottcher, M. et al. A TLR4 polymorphism is associated with asthma and reduced lipopolysaccharide-induced interleukin-12(p70) responses in Swedish children. J. Allergy Clin. Immunol. 114, 561–567 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Tantisira, K. et al. Toll-like receptor 6 gene (TLR6): single-nucleotide polymorphism frequencies and preliminary association with the diagnosis of asthma. Genes Immun. 5, 343–346 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Lazarus, R. et al. Single nucleotide polymorphisms in innate immunity genes: abundant variation and potential role in complex human disease. Immunol. Rev. 190, 9–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Hysi, P. et al. NOD1 variation, immunoglobulin E and asthma. Hum. Mol. Genet. 14, 935–941 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Kabesch, M. et al. Association between polymorphisms in caspase recruitment domain containing protein 15 and allergy in two German populations. J. Allergy Clin. Immunol. 111, 813–817 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Rosenstiel, P., Till, A. & Schreiber, S. NOD-like receptors and human diseases. Microbes Infect. 9, 648–657 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Hong, J. et al. TLR2, TLR4 and TLR9 polymorphisms and Crohn's disease in a New Zealand Caucasian cohort. J. Gastroenterol. Hepatol. 22, 1760–1766 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Arroyo-Espliguero, R., Avanzas, P., Jeffery, S. & Kaski, J. C. CD14 and toll-like receptor 4: a link between infection and acute coronary events? Heart 90, 983–988 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hobbs, K., Negri, J., Klinnert, M., Rosenwasser, L. J. & Borish, L. Interleukin-10 and transforming growth factor-β promoter polymorphisms in allergies and asthma. Am. J. Respir. Crit. Care Med. 158, 1958–1962 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Silverman, E. S. et al. Transforming growth factor-β1 promoter polymorphism C-509T is associated with asthma. Am. J. Respir. Crit. Care Med. 169, 214–219 (2004).

    Article  PubMed  Google Scholar 

  26. Litonjua, A. A. et al. Polymorphisms in signal transducer and activator of transcription 3 and lung function in asthma. Respir. Res. 6, 52 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shiina, T., Inoko, H. & Kulski, J. K. An update of the HLA genomic region, locus information and disease associations: 2004. Tissue Antigens 64, 631–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Jinnai, N. et al. Polymorphisms in the prostaglandin E2 receptor subtype 2 gene confer susceptibility to aspirin-intolerant asthma: a candidate gene approach. Hum. Mol. Genet. 13, 3203–3217 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Traidl-Hoffmann, C. et al. Pollen-associated phytoprostanes inhibit dendritic cell interleukin-12 production and augment T helper type 2 cell polarization. J. Exp. Med. 201, 627–636 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hwang, E. S., Szabo, S. J., Schwartzberg, P. L. & Glimcher, L. H. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 307, 430–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Pykalainen, M. et al. Association analysis of common variants of STAT6, GATA3, and STAT4 to asthma and high serum IgE phenotypes. J. Allergy Clin. Immunol. 115, 80–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Tantisira, K. G. et al. TBX21: a functional variant predicts improvement in asthma with the use of inhaled corticosteroids. Proc. Natl. Acad. Sci. USA 101, 18099–18104 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kabesch, M. et al. A complete screening of the IL4 gene: novel polymorphisms and their association with asthma and IgE in childhood. J. Allergy Clin. Immunol. 112, 893–898 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Basehore, M. J. et al. A comprehensive evaluation of IL4 variants in ethnically diverse populations: association of total serum IgE levels and asthma in white subjects. J. Allergy Clin. Immunol. 114, 80–87 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Loza, M. J. & Chang, B. L. Association between Q551R IL4R genetic variants and atopic asthma risk demonstrated by meta-analysis. J. Allergy Clin. Immunol. 120, 578–585 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Schedel, M. et al. A signal transducer and activator of transcription 6 haplotype influences the regulation of serum IgE levels. J. Allergy Clin. Immunol. 114, 1100–1105 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Morahan, G. et al. Association of IL12B promoter polymorphism with severity of atopic and non-atopic asthma in children. Lancet 360, 455–459 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Wills-Karp, M. et al. Interleukin-13: central mediator of allergic asthma. Science 282, 2258–2261 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Grunig, G. et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282, 2261–2263 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ghaffar, O. et al. IL-13 mRNA and immunoreactivity in allergen-induced rhinitis: comparison with IL-4 expression and modulation by topical glucocorticoid therapy. Am. J. Respir. Cell. Mol. Biol. 17, 17–24 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Lordan, J. L. et al. Cooperative effects of TH2 cytokines and allergen on normal and asthmatic bronchial epithelial cells. J. Immunol. 169, 407–414 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Dealtry, G. B., Clark, D. E., Sharkey, A., Charnock-Jones, D. S. & Smith, S. K. Expression and localization of the TH2-type cytokine interleukin-13 and its receptor in the placenta during human pregnancy. Am. J. Reprod. Immunol. 40, 283–290 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Ribeiro-do-Couto, L. M. et al. High IL-13 production by human neonatal T cells: neonate immune system regulator? Eur. J. Immunol. 31, 3394–3402 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Wenzel, S., Wilbraham, D., Fuller, R., Getz, E. B. & Longphre, M. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 370, 1422–1431 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Vladich, F. D. et al. IL-13 R130Q, a common variant associated with allergy and asthma, enhances effector mechanisms essential for human allergic inflammation. J. Clin. Invest. 115, 747–754 (2005). This paper demonstrates how functional studies can elucidate the contribution of genetic variants to disease susceptibility.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Graves, P. E. et al. A cluster of seven tightly linked polymorphisms in the IL-13 gene is associated with total serum IgE levels in three populations of white children. J. Allergy Clin. Immunol. 105, 506–513 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, X. et al. An IL13 coding region variant is associated with a high total serum IgE level and atopic dermatitis in the German multicenter atopy study (MAS-90). J. Allergy Clin. Immunol. 106, 167–170 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, M. et al. A common IL-13 Arg130Gln single nucleotide polymorphism among Chinese atopy patients with allergic rhinitis. Hum. Genet. 113, 387–390 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Heinzmann, A. et al. Association study of the IL13 variant Arg110Gln in atopic diseases and juvenile idiopathic arthritis. J. Allergy Clin. Immunol. 112, 735–739 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Heinzmann, A. et al. Genetic variants of IL-13 signalling and human asthma and atopy. Hum. Mol. Genet. 9, 549–559 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. He, J. Q. et al. Genetic variants of the IL13 and IL4 genes and atopic diseases in at-risk children. Genes Immun. 4, 385–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Tsunemi, Y. et al. Interleukin-13 gene polymorphism G4257A is associated with atopic dermatitis in Japanese patients. J. Dermatol. Sci. 30, 100–107 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. DeMeo, D. et al. Univariate and multivariate family-based association analysis of the IL-13 ARG130GLN polymorphism in the Childhood Asthma Management Program. Genet. Epidemiol. 23, 335–348 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. van der Pouw Kraan, T. C. et al. An IL-13 promoter polymorphism associated with increased risk of allergic asthma. Genes Immun. 1, 61–65 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Howard, T. D. et al. Identification and association of polymorphisms in the Interleukin-13 gene with asthma and atopy in a Dutch population. Am. J. Respir. Cell. Mol. Biol. 25, 377–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Hummelshoj, T. et al. Association between an interleukin-13 promoter polymorphism and atopy. Eur. J. Immunogenet. 30, 355–359 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Liu, X. et al. Associations between specific serum IgE response and 6 variants within the genes IL4, IL13, and IL4RA in German children: the German Multicenter Atopy Study. J. Allergy Clin. Immunol. 113, 489–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Cameron, L. et al. TH2-selective enhancement of human IL13 transcription by IL13-1112C>T, a polymorphism associated with allergic inflammation. J. Immunol. 177, 8633–8642 (2006). This paper provides strong evidence for the existence of gene–environment interactions in the nucleus.

    Article  CAS  PubMed  Google Scholar 

  59. Shirakawa, T. et al. Association between atopy and variants of the β subunit of the high-affinity immunoglobulin E receptor. Nature Genet. 7, 125–129 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Donnadieu, E. et al. Competing functions encoded in the allergy-associated FcɛRIβ gene. Immunity 18, 665–674 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Kabesch, M. et al. Polymorphisms in eosinophil pathway genes, asthma and atopy. Allergy 62, 423–428 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Namkung, J. H. et al. IL-5 and IL-5 receptor α polymorphisms are associated with atopic dermatitis in Koreans. Allergy 62, 934–942 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Johansson, S., Wennergren, G., Aberg, N. & Rudin, A. Clara cell 16-kd protein downregulates TH2 differentiation of human naive neonatal T cells. J. Allergy Clin. Immunol. 120, 308–314 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Nickel, R. G. et al. Atopic dermatitis is associated with a functional mutation in the promoter of the C-C chemokine RANTES. J. Immunol. 164, 1612–1616 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Levy, H. et al. Association of defensin β-1 gene polymorphisms with asthma. J. Allergy Clin. Immunol. 115, 252–258 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sengler, C. et al. Clara cell protein 16 (CC16) gene polymorphism influences the degree of airway responsiveness in asthmatic children. J. Allergy Clin. Immunol. 111, 515–519 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Nakamura, H. et al. Variant eotaxin: its effects on the asthma phenotype. J. Allergy Clin. Immunol. 108, 946–953 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Chavanas, S. et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nature Genet. 25, 141–142 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Walley, A. J. et al. Gene polymorphism in Netherton and common atopic disease. Nature Genet. 29, 175–178 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Palmer, C. N. et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nature Genet. 38, 441–446 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Marenholz, I. et al. Filaggrin loss-of-function mutations predispose to phenotypes involved in the atopic march. J. Allergy Clin. Immunol. 118, 866–871 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Palmer, C. N. et al. Filaggrin null mutations are associated with increased asthma severity in children and young adults. J. Allergy Clin. Immunol. 120, 64–68 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Morar, N., Cookson, W. O., Harper, J. I. & Moffatt, M. F. Filaggrin mutations in children with severe atopic dermatitis. J. Invest. Dermatol. 127, 1667–1672 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Ying, S., Meng, Q., Corrigan, C. J. & Lee, T. H. Lack of filaggrin expression in the human bronchial mucosa. J. Allergy Clin. Immunol. 118, 1386–1388 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Hudson, T. J. Skin barrier function and allergic risk. Nature Genet. 38, 399–400 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Baurecht, H. et al. Toward a major risk factor for atopic eczema: meta-analysis of filaggrin polymorphism data. J. Allergy Clin. Immunol. 120, 1406–1412 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Smith, F. J. et al. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nature Genet. 38, 337–342 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Drysdale, C. M. et al. Complex promoter and coding region β 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc. Natl. Acad. Sci. USA 97, 10483–10488 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moffatt, M. F. & Cookson, W. O. Tumour necrosis factor haplotypes and asthma. Hum. Mol. Genet. 6, 551–554 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Sayers, I. et al. Allelic association and functional studies of promoter polymorphism in the leukotriene C4 synthase gene (LTC4S) in asthma. Thorax 58, 417–424 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fryer, A. A. et al. Polymorphism at the glutathione S-transferase GSTP1 locus. A new marker for bronchial hyperresponsiveness and asthma. Am. J. Respir. Crit. Care Med. 161, 1437–1442 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Kabesch, M. et al. Glutathione S transferase deficiency and passive smoking increase childhood asthma. Thorax 59, 569–573 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shin, H. D. et al. Association of thromboxane A2 receptor (TBXA2R) with atopy and asthma. J. Allergy Clin. Immunol. 112, 454–457 (2003).

    Article  PubMed  Google Scholar 

  84. Drazen, J. M. et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nature Genet. 22, 168–170 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Matsuda, A. et al. Coding SNP in tenascin-C Fn-III-D domain associates with adult asthma. Hum. Mol. Genet. 14, 2779–2786 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Gao, P. S. et al. Variants of NOS1, NOS2, and NOS3 genes in asthmatics. Biochem. Biophys. Res. Commun. 267, 761–763 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Hall, I. P. & Sayers, I. Pharmacogenetics and asthma: false hope or new dawn? Eur. Respir. J. 29, 1239–1245 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Van Eerdewegh, P. et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418, 426–430 (2002). This paper reported the identification of ADAM33 , the first asthma susceptibility gene discovered by positional cloning.

    Article  CAS  PubMed  Google Scholar 

  89. Holgate, S. T. et al. Local genetic and environmental factors in asthma disease pathogenesis: chronicity and persistence mechanisms. Eur. Respir. J. 29, 793–803 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Zhang, Y. et al. Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nature Genet. 34, 181–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Mellor, J. It takes a PHD to read the histone code. Cell 126, 22–24 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Allen, M. et al. Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nature Genet. 35, 258–263 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Laitinen, T. et al. Characterization of a common susceptibility locus for asthma-related traits. Science 304, 300–304 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Nicolae, D. et al. Fine mapping and positional candidate studies identify HLA-G. as an asthma susceptibility gene on chromosome 6p21. Am. J. Hum. Genet. 76, 349–357 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Tan, Z. et al. Allele-specific targeting of microRNAs to HLA-G. and risk of asthma. Am. J. Hum. Genet. 81, 829–834 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Noguchi, E. et al. Positional identification of an asthma susceptibility gene on human chromosome 5q33. Am. J. Respir. Crit. Care Med. 172, 183–188 (2005).

    Article  PubMed  Google Scholar 

  97. Balaci, L. et al. IRAK-M is involved in the pathogenesis of early-onset persistent asthma. Am. J. Hum. Genet. 80, 1103–1114 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Soderhall, C. et al. Variants in a novel epidermal collagen gene (COL29A1) are associated with atopic dermatitis. PLoS Biol. 5, e242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Editorial. Framework for a fully powered risk engine. Nature Genet. 37, 1153 (2005).

  100. Hall, I. P. & Blakey, J. D. Genetic association studies in Thorax. Thorax 60, 357–359 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chanock, S. J. et al. Replicating genotype-phenotype associations. Nature 447, 655–660 (2007). This paper provides a thoughtful and in-depth discussion of how the results of association studies and their replication, or lack thereof, should be interpreted.

    Article  CAS  PubMed  Google Scholar 

  102. Hersh, C. P. et al. Comprehensive testing of positionally cloned asthma genes in two populations. Am. J. Respir. Crit. Care Med. 176, 849–857 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Maier, L. M. et al. Association of IL13 with total IgE: Evidence against an inverse association of atopy and diabetes. J. Allergy Clin. Immunol. 117, 1306–1313 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. von Mutius, E. Influences in allergy: epidemiology and the environment. J. Allergy Clin. Immunol. 113, 373–379 (2004).

    Article  PubMed  Google Scholar 

  105. Valdar, W. et al. Genetic and environmental effects on complex traits in mice. Genetics 174, 959–984 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Martinez, F. D. Gene–environment interactions in asthma and allergies: a new paradigm to understand disease causation. Immunol. Allergy Clin. North Am. 25, 709–721 (2005).

    Article  PubMed  Google Scholar 

  107. Finberg, R. W. & Kurt-Jones, E. A. CD14: chaperone or matchmaker? Immunity 24, 127–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Lee, H. K., Dunzendorfer, S., Soldau, K. & Tobias, P. S. Double-stranded RNA-mediated TLR3 activation is enhanced by CD14. Immunity 24, 153–163 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. LeVan, T. D. et al. A common single nucleotide polymorphism in the CD14 promoter decreases the affinity of Sp protein binding and enhances transcriptional activity. J. Immunol. 167, 5838–5844 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Jones, C. A. et al. Reduced soluble CD14 levels in amniotic fluid and breast milk are associated with the subsequent development of atopy, eczema, or both. J. Allergy Clin. Immunol. 109, 858–866 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Leynaert, B. et al. Association between farm exposure and atopy, according to the CD14 C-159T polymorphism. J. Allergy Clin. Immunol. 118, 658–665 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Ober, C., Tsalenko, A., Parry, R. & Cox, N. J. A second-generation genomewide screen for asthma-susceptibility alleles in a founder population. Am. J. Hum. Genet. 67, 1154–1162 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Woo, J., Assa'ad, A., Heizer, A., Bernstein, J. & Hershey, G. The-59 C→T polymorphism of CD14 is associated with nonatopic asthma and food allergy. J. Allergy Clin. Immunol. 112, 438–444 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Sengler, C. et al. Evaluation of the CD14 C-159T polymorphism in the German MAS cohort. Clin. Exp. Allergy 33, 166–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Kabesch, M. et al. A promoter polymorphism in the CD14 gene is associated with elevated levels of soluble CD14 but not with IgE or atopic diseases. Allergy 59, 520–525 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Kedda, M. A. et al. The CD14 C-159T polymorphism is not associated with asthma or asthma severity in an Australian adult population. Thorax 60, 211–214 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Vercelli, D. Genetics, epigenetics and the environment: switching, buffering, releasing. J. Allergy Clin. Immunol. 113, 381–386 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Eder, W. et al. Opposite effects of CD14/-260 on serum IgE levels in children raised in different environments. J. Allergy Clin. Immunol. 116, 601–607 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Zambelli-Weiner, A. et al. Evaluation of the CD14/-260 polymorphism and house dust endotoxin exposure in the Barbados Asthma Genetics Study. J. Allergy Clin. Immunol. 115, 1203–1209 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Gern, J. E. et al. Effects of dog ownership and genotype on immune development and atopy in infancy. J. Allergy Clin. Immunol. 113, 307–314 (2004).

    Article  PubMed  Google Scholar 

  121. Simpson, A. et al. Endotoxin exposure, CD14 and allergic disease: an interaction between genes and the environment. Am. J. Respir. Crit. Care Med. 174, 386–392 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Meyers, D. A. et al. Genome screen for asthma and bronchial hyperresponsiveness: interactions with passive smoke exposure. J. Allergy Clin. Immunol. 115, 1169–1175 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Weiss, L. A., Pan, L., Abney, M. & Ober, C. The sex-specific genetic architecture of quantitative traits in humans. Nature Genet. 38, 218–222 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Vercelli, D. Learning from discrepancies: CD14 polymorphisms, atopy and the endotoxin switch. Clin. Exp. Allergy 33, 153–155 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Kabesch, M. et al. IL-4/IL-13 pathway genetics strongly influence serum IgE levels and childhood asthma. J. Allergy Clin. Immunol. 117, 269–274 (2006). This work highlighted gene–gene interactions along the T H 2-cell-associated signalling pathway that might be important for allergy and asthma risk.

    Article  CAS  PubMed  Google Scholar 

  126. Howard, T. D. et al. Gene–gene interaction in asthma: IL4RA and IL13 in a Dutch population with asthma. Am. J. Hum. Genet. 70, 230–236 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Chan, I. H. et al. Gene–gene interactions for asthma and plasma total IgE concentration in Chinese children. J. Allergy Clin. Immunol. 117, 127–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Moffatt, M. F. et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448, 470–473 (2007). This paper reported the results of the first GWA study for an asthma phenotype.

    Article  CAS  PubMed  Google Scholar 

  129. Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nature Rev. Genet. 6, 95–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  131. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007). This paper provides an eloquent demonstration of the power of GWA studies and an in-depth discussion of issues related to study design, sample size and phenotyping.

  132. Vercelli, D. & Martinez, F. D. The Faustian bargain of genetic association studies: bigger might not be better, or at least it might not be good enough. J. Allergy Clin. Immunol. 117, 1303–1305 (2006).

    Article  PubMed  Google Scholar 

  133. Christensen, K. & Murray, J. C. What genome-wide association studies can do for medicine. N. Engl. J. Med. 356, 1094–1097 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Williams, S. M. et al. Problems with genome-wide association studies. Science 316, 1840–1842 (2007).

    PubMed  Google Scholar 

  136. Hjelmqvist, L. et al. ORMDL proteins are a conserved new family of endoplasmic reticulum membrane proteins. Genome Biol. 3, research0027.1–0027.16 (2002).

  137. Farrall, M. Quantitative genetic variation: a post-modern view. Hum. Mol. Genet. 13 (Spec. No. 1), R1–R7 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Martinez, F. D. Toward asthma prevention — does all that really matters happen before we learn to read? N. Engl. J. Med. 349, 1473–1475 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Ege, M. J. et al. Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. J. Allergy Clin. Immunol. 117, 817–823 (2006).

    Article  PubMed  Google Scholar 

  140. O'Donnell, A. R. et al. Age-specific relationship between CD14 and atopy in a cohort assessed from age 8 to 25 years. Am. J. Respir. Crit. Care Med. 169, 615–622 (2004).

    Article  PubMed  Google Scholar 

  141. Cropley, J., Suter, C., Beckman, K. & Martin, D. Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc. Natl. Acad. Sci. USA 103, 17308–17312 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rutherford, S. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998).

    Article  CAS  PubMed  Google Scholar 

  143. Queitsch, C., Sangster, T. & Lindquist, S. Hsp90 as a capacitor of phenotypic variation. Nature 417, 618–624 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Kaati, G., Bygren, L. O., Pembrey, M. & Sjostrom, M. Transgenerational response to nutrition, early life circumstances and longevity. Eur. J. Hum. Genet. 15, 784–790 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Webster, R. B., Rodriguez, Y., Klimecki, W. T. & Vercelli, D. The human IL-13 locus in neonatal CD4+ T cells is refractory to the acquisition of a repressive chromatin architecture. J. Biol. Chem. 282, 700–709 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Santangelo, S., Cousins, D. J., Winkelmann, N. E. & Staynov, D. Z. DNA methylation changes at human TH2 cytokine genes coincide with DNase I hypersensitive site formation during CD4+ T cell differentiation. J. Immunol. 169, 1893–1903 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Barnes, P. J., Adcock, I. M. & Ito, K. Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur. Respir. J. 25, 552–563 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Hoffjan, S. et al. Genetic variation in immunoregulatory pathways and atopic phenotypes in infancy. J. Allergy Clin. Immunol. 113, 511–518 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Holloway, J. W. & Koppelman, G. H. Identifying novel genes contributing to asthma pathogenesis. Curr. Opin. Allergy Clin. Immunol. 7, 69–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Leung, T. F. et al. A polymorphism in the coding region of interleukin-13 gene is associated with atopy but not asthma in Chinese children. Clin. Exp. Allergy 31, 1515–1521 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. Leung, T. F. et al. Association between candidate genes and lung function growth in Chinese asthmatic children. Clin. Exp. Allergy 37, 1480–1486 (2007).

    CAS  PubMed  Google Scholar 

  152. Chen, W., Ericksen, M. B., Levin, L. S. & Khurana Hershey, G. K. Functional effect of the R110Q IL13 genetic variant alone and in combination with IL4RA genetic variants. J. Allergy Clin. Immunol. 114, 553–560 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASES

OMIM

Asthma

atopic dermatits

inflammatory bowel disease

ichthyosis vulgaris

Netherton's syndrome

dbSNP

rs1800925

rs1801275

rs1805010

rs1805015

rs1881457

rs1295686

rs20541

rs2243250

rs2303067

rs2569190

rs324011

rs847

rs4696480

FURTHER INFORMATION

Donata Vercelli's homepage

International HapMap Project

Seattle SNPs

The Single Nucleotide Polymorphism database

Glossary

Atopy

The propensity of an individual to develop allergic diseases, such as asthma, atopic dermatitis, food allergy or hay fever. It is defined operationally by elevations in serum levels of IgE reactive with allergens or by skin-test reactivity to allergens.

Population structure

Any deviation from the ideal state of a single population in which every individual has the same chance of mating with every other.

Single nucleotide polymorphisms

(SNPs). Variations in DNA sequence in which one of the four nucleotides is substituted for another (for example, C for A). SNPs are the most frequent type of polymorphism in the genome.

Tag SNP

A single nucleotide polymorphism (SNP) that is correlated with a neighbouring variant, which serves as a proxy for that (not genotyped) variant.

TH2 cells

CD4+ T helper (TH) cells differentiated along a pathway that leads to coordinated expression of IL-4, IL-13 and IL-5. TH2 cells and their cytokine products are central mediators of allergic inflammation.

Positional cloning

The process of systematically identifying mutations or susceptibility alleles by studying genetic markers in families or high-risk individuals.

Pattern recognition receptors

Proteins expressed by innate immune cells that detect molecules associated with microbial pathogens or cellular stress.

Quantitative-trait locus

A polymorphic locus that contains alleles that differentially affect the expression of a continuously distributed phenotypic trait (for example, total serum IgE levels).

Microsatellites

Polymorphic DNA loci that consist of repeating units of 1–4 bp in length.

Linkage disequilibrium map

Map of non-random associations between alleles at two or more loci.

Haplotype

A combination of alleles at different markers located on the same chromosome in a specific genomic region.

MicroRNAs

Single-stranded RNA molecules of approximately 21–23 nucleotides in length that are thought to regulate the expression of other genes.

Epigenetics

The study of heritable changes in gene function that occur without a change in the DNA sequence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vercelli, D. Discovering susceptibility genes for asthma and allergy. Nat Rev Immunol 8, 169–182 (2008). https://doi.org/10.1038/nri2257

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2257

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing