Semin Respir Crit Care Med 2013; 34(01): 103-109
DOI: 10.1055/s-0033-1333569
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Diagnosis of Nontuberculous Mycobacterial Infections

Jakko van Ingen
1   Department of Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
› Author Affiliations
Further Information

Publication History

Publication Date:
04 March 2013 (online)

Abstract

The nontuberculous mycobacteria (NTM) are typically environmental organisms residing in soil and water. Although generally of low pathogenicity to humans, NTM can cause a wide array of clinical diseases; pulmonary disease is most frequent, followed by lymphadenitis in children, skin disease by M. marinum (particularly in fish tank fanciers), and other extrapulmonary or disseminated infections in severely immunocompromised patients. Of the >140 NTM species reported in the literature, 25 species have been strongly associated with NTM diseases; the remainder are environmental organisms rarely encountered in clinical samples. Correct species identification is very important because NTM species differ in their clinical relevance. Further, NTM differ strongly in their growth rate, temperature tolerance, and drug susceptibility. The diagnosis of NTM disease is complex and requires good communication between clinicians, radiologists, and microbiologists. Isolation of M. kansasii and (in northwestern Europe) M. malmoense from pulmonary specimens usually indicates disease, whereas Mycobacterium gordonae and, to a lesser extent, M. simiae or M. chelonae are typically contaminants rather than causative agents of true disease. Mycobacterium avium complex (MAC), M. xenopi, and M. abscessus form an intermediate category between these two extremes. This review covers the clinical and laboratory diagnosis of NTM diseases and particularities for the different disease types and patient populations. Because of limited sensitivity and specificity of symptoms, radiology, and direct microscopy of clinical samples, culture remains the gold standard. Yet culture is time consuming and demands the use of multiple media types and incubation temperatures to optimize the yield. Outside of reference centers, such elaborate culture algorithms are scarce.

 
  • References

  • 1 Falkinham JO. Impact of human activities on the ecology of nontuberculous mycobacteria. Future Microbiol 2010; 5 (6) 951-960
  • 2 Wolinsky E. Nontuberculous mycobacteria and associated diseases. Am Rev Respir Dis 1979; 119 (1) 107-159
  • 3 Schulze-Röbbecke R, Buchholtz K. Heat susceptibility of aquatic mycobacteria. Appl Environ Microbiol 1992; 58 (6) 1869-1873
  • 4 van Ingen J, van der Laan T, Dekhuijzen R, Boeree MJ, van Soolingen D. In vitro drug susceptibility of 2275 clinical non-tuberculous Mycobacterium isolates of 49 species in the Netherlands. Int J Antimicrob Agents 2010; 35 (2) 169-173
  • 5 Griffith DE, Aksamit T, Brown-Elliott BA , et al; ATS Mycobacterial Diseases Subcommittee; American Thoracic Society; Infectious Disease Society of America. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007; 175 (4) 367-416
  • 6 van Ingen J, Bendien SA, de Lange WCM , et al. Clinical relevance of non-tuberculous mycobacteria isolated in the Nijmegen-Arnhem region, The Netherlands. Thorax 2009; 64 (6) 502-506
  • 7 Huang JH, Kao PN, Adi V, Ruoss SJ. Mycobacterium avium-intracellulare pulmonary infection in HIV-negative patients without preexisting lung disease: diagnostic and management limitations. Chest 1999; 115 (4) 1033-1040
  • 8 Albelda SM, Kern JA, Marinelli DL, Miller WT. Expanding spectrum of pulmonary disease caused by nontuberculous mycobacteria. Radiology 1985; 157 (2) 289-296
  • 9 Ellis SM. The spectrum of tuberculosis and non-tuberculous mycobacterial infection. Eur Radiol 2004; 14 (Suppl. 03) E34-E42
  • 10 Kanne JP, Yandow DR, Mohammed TL, Meyer CA. CT findings of pulmonary nocardiosis. AJR Am J Roentgenol 2011; 197 (2) W266-72
  • 11 Koh WJ, Lee KS, Kwon OJ, Jeong YJ, Kwak SH, Kim TS. Bilateral bronchiectasis and bronchiolitis at thin-section CT: diagnostic implications in nontuberculous mycobacterial pulmonary infection. Radiology 2005; 235 (1) 282-288
  • 12 Fujiuchi S, Matsumoto H, Yamazaki Y , et al. Analysis of chest CT in patients with Mycobacterium avium complex pulmonary disease. Respiration 2003; 70 (1) 76-81
  • 13 Tsukamura M. Diagnosis of disease caused by Mycobacterium avium complex. Chest 1991; 99 (3) 667-669
  • 14 Sugihara E, Hirota N, Niizeki T , et al. Usefulness of bronchial lavage for the diagnosis of pulmonary disease caused by Mycobacterium avium-intracellulare complex (MAC) infection. J Infect Chemother 2003; 9 (4) 328-332
  • 15 Tanaka E, Amitani R, Niimi A, Suzuki K, Murayama T, Kuze F. Yield of computed tomography and bronchoscopy for the diagnosis of Mycobacterium avium complex pulmonary disease. Am J RespirCrit Care Med 1997; 155 (6) 2041-2046
  • 16 O'Connell ML, Birkenkamp KE, Kleiner DE, Folio LR, Holland SM, Olivier KN. Lung manifestations in an autopsy-based series of pulmonary or disseminated nontuberculous mycobacterial disease. Chest 2012; 141 (5) 1203-1209
  • 17 van Ingen J, van Soolingen D. Cervicofacial lymphadenitis caused by nontuberculous mycobacteria; host, environmental or bacterial factors?. Int J Pediatr Otorhinolaryngol 2011; 75: 722-723
  • 18 Bruijnesteijn Van Coppenraet ES, Lindeboom JA, Prins JM, Peeters MF, Claas EC, Kuijper EJ. Real-time PCR assay using fine-needle aspirates and tissue biopsy specimens for rapid diagnosis of mycobacterial lymphadenitis in children. J Clin Microbiol 2004; 42 (6) 2644-2650
  • 19 Hartwig NG, Warris A, van de Vosse E , et al. “Mycobacterium tilburgii” infection in two immunocompromised children: importance of molecular tools in culture-negative mycobacterial disease. J Clin Microbiol 2011; 49 (12) 4409-4411
  • 20 Petrini B. Mycobacterium marinum: ubiquitous agent of waterborne granulomatous skin infections. Eur J Clin Microbiol Infect Dis 2006; 25 (10) 609-613
  • 21 Uslan DZ, Kowalski TJ, Wengenack NL, Virk A, Wilson JW. Skin and soft tissue infections due to rapidly growing mycobacteria: comparison of clinical features, treatment, and susceptibility. Arch Dermatol 2006; 142 (10) 1287-1292
  • 22 van Ingen J, Boeree MJ, Dekhuijzen PNR, van Soolingen D. Mycobacterial disease in patients with rheumatic disease. Nat Clin Pract Rheumatol 2008; 4 (12) 649-656
  • 23 Kilby JM, Marques MB, Jaye DL, Tabereaux PB, Reddy VB, Waites KB. The yield of bone marrow biopsy and culture compared with blood culture in the evaluation of HIV-infected patients for mycobacterial and fungal infections. Am J Med 1998; 104 (2) 123-128
  • 24 Akpek G, Lee SM, Gagnon DR, Cooley TP, Wright DG. Bone marrow aspiration, biopsy, and culture in the evaluation of HIV-infected patients for invasive mycobacteria and histoplasma infections. Am J Hematol 2001; 67 (2) 100-106
  • 25 Ker CC, Hung CC, Huang SY , et al. Comparison of bone marrow studies with blood culture for etiological diagnosis of disseminated mycobacterial and fungal infection in patients with acquired immunodeficiency syndrome. J Microbiol Immunol Infect 2002; 35 (2) 89-93
  • 26 Prego V, Glatt AE, Roy V, Thelmo W, Dincsoy H, Raufman JP. Comparative yield of blood culture for fungi and mycobacteria, liver biopsy, and bone marrow biopsy in the diagnosis of fever of undetermined origin in human immunodeficiency virus-infected patients. Arch Intern Med 1990; 150 (2) 333-336
  • 27 Cappell MS, Schwartz MS, Biempica L. Clinical utility of liver biopsy in patients with serum antibodies to the human immunodeficiency virus. Am J Med 1990; 88 (2) 123-130
  • 28 Saubolle MA, Kiehn TE, White MH, Rudinsky MF, Armstrong D. Mycobacterium haemophilum: microbiology and expanding clinical and geographic spectra of disease in humans. Clin Microbiol Rev 1996; 9 (4) 435-447
  • 29 Liao CH, Lai CC, Ding LW , et al. Skin and soft tissue infection caused by non-tuberculous mycobacteria. Int J Tuberc Lung Dis 2007; 11 (1) 96-102
  • 30 Wright PW, Wallace Jr RJ, Wright NW, Brown BA, Griffith DE. Sensitivity of fluorochrome microscopy for detection of Mycobacterium tuberculosis versus nontuberculous mycobacteria. J Clin Microbiol 1998; 36 (4) 1046-1049
  • 31 Peres RL, Maciel EL, Morais CG , et al. Comparison of two concentrations of NALC-NaOH for decontamination of sputum for mycobacterial culture. Int J Tuberc Lung Dis 2009; 13 (12) 1572-1575
  • 32 Buijtels PC, Petit PL. Comparison of NaOH-N-acetyl cysteine and sulfuric acid decontamination methods for recovery of mycobacteria from clinical specimens. J Microbiol Methods 2005; 62 (1) 83-88
  • 33 Whittier S, Hopfer RL, Knowles MR, Gilligan PH. Improved recovery of mycobacteria from respiratory secretions of patients with cystic fibrosis. J Clin Microbiol 1993; 31 (4) 861-864
  • 34 Whittier S, Olivier K, Gilligan P, Knowles M, Della-Latta P. The Nontuberculous Mycobacteria in Cystic Fibrosis Study Group. Proficiency testing of clinical microbiology laboratories using modified decontamination procedures for detection of nontuberculous mycobacteria in sputum samples from cystic fibrosis patients. J Clin Microbiol 1997; 35 (10) 2706-2708
  • 35 Ferroni A, Vu-Thien H, Lanotte P , et al. Value of the chlorhexidine decontamination method for recovery of nontuberculous mycobacteria from sputum samples of patients with cystic fibrosis. J Clin Microbiol 2006; 44 (6) 2237-2239
  • 36 Idigoras P, Beristain X, Iturzaeta A, Vicente D, Pérez-Trallero E. Comparison of the automated nonradiometricBactec MGIT 960 system with Löwenstein-Jensen, Coletsos, and Middlebrook 7H11 solid media for recovery of mycobacteria. Eur J Clin Microbiol Infect Dis 2000; 19 (5) 350-354
  • 37 Yan JJ, Huang AH, Tsai SH, Ko WC, Jin YT, Wu JJ. Comparison of the MB/BacT and BACTEC MGIT 960 system for recovery of mycobacteria from clinical specimens. Diagn Microbiol Infect Dis 2000; 37 (1) 25-30
  • 38 Chew WK, Lasaitis RM, Schio FA, Gilbert GL. Clinical evaluation of the Mycobacteria Growth Indicator Tube (MGIT) compared with radiometric (Bactec) and solid media for isolation of Mycobacterium species. J Med Microbiol 1998; 47 (9) 821-827
  • 39 Tortoli E, Cichero P, Piersimoni C, Simonetti MT, Gesu G, Nista D. Use of BACTEC MGIT 960 for recovery of mycobacteria from clinical specimens: multicenter study. J Clin Microbiol 1999; 37 (11) 3578-3582
  • 40 Alcaide F, Benítez MA, Escribà JM, Martín R. Evaluation of the BACTEC MGIT 960 and the MB/BacT systems for recovery of mycobacteria from clinical specimens and for species identification by DNA AccuProbe. J Clin Microbiol 2000; 38 (1) 398-401
  • 41 Realini L, De Ridder K, Hirschel B, Portaels F. Blood and charcoal added to acidified agar media promote the growth of Mycobacterium genavense. Diagn Microbiol Infect Dis 1999; 34 (1) 45-50
  • 42 Thomsen VO, Dragsted UB, Bauer J, Fuursted K, Lundgren J. Disseminated infection with Mycobacterium genavense: a challenge to physicians and mycobacteriologists. J Clin Microbiol 1999; 37 (12) 3901-3905
  • 43 Koh WJ, Kwon OJ, Jeon K , et al. Clinical significance of nontuberculous mycobacteria isolated from respiratory specimens in Korea. Chest 2006; 129 (2) 341-348
  • 44 Hoefsloot W, van Ingen J, de Lange WCM, Dekhuijzen PNR, Boeree MJ, van Soolingen D. Clinical relevance of Mycobacterium malmoense isolation in The Netherlands. Eur Respir J 2009; 34 (4) 926-931
  • 45 Springer B, Stockman L, Teschner K, Roberts GD, Böttger EC. Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods. J Clin Microbiol 1996; 34 (2) 296-303
  • 46 Roth A, Fischer M, Hamid ME, Michalke S, Ludwig W, Mauch H. Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences. J Clin Microbiol 1998; 36 (1) 139-147
  • 47 McNabb A, Eisler D, Adie K , et al. Assessment of partial sequencing of the 65-kilodalton heat shock protein gene (hsp65) for routine identification of Mycobacterium species isolated from clinical sources. J Clin Microbiol 2004; 42 (7) 3000-3011
  • 48 Adékambi T, Colson P, Drancourt M. rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol 2003; 41 (12) 5699-5708
  • 49 Saleeb PG, Drake SK, Murray PR, Zelazny AM. Identification of mycobacteria in solid-culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2011; 49 (5) 1790-1794
  • 50 Subcommittee of the Joint Tuberculosis Committee of the British Thoracic Society. Management of opportunist mycobacterial infections: Joint Tuberculosis Committee Guidelines 1999. Thorax 2000; 55 (3) 210-218
  • 51 van Ingen J, Boeree MJ, de Lange WC, Dekhuijzen PN, van Soolingen D. Impact of new American Thoracic Society diagnostic criteria on management of nontuberculous mycobacterial infection. Am J RespirCrit Care Med 2007; 176 (4) 418 , author reply 419
  • 52 Epson E, Cassidy M, Marshall-Olson A, Hedberg K, Winthrop KL. Patients with nontuberculous mycobacteria: comparison of updated and previous diagnostic criteria for lung disease. Diagn Microbiol Infect Dis 2012; 74 (1) 98-100
  • 53 Martín-Casabona N, Bahrmand AR, Bennedsen J , et al; Spanish Group for Non-Tuberculosis Mycobacteria. Non-tuberculous mycobacteria: patterns of isolation. A multi-country retrospective survey. Int J Tuberc Lung Dis 2004; 8 (10) 1186-1193
  • 54 Taillard C, Greub G, Weber R , et al. Clinical implications of Mycobacterium kansasii species heterogeneity: Swiss National Survey. J Clin Microbiol 2003; 41 (3) 1240-1244
  • 55 Houben D, Demangel C, van Ingen J , et al. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol 2012; 14 (8) 1287-1298
  • 56 Verregghen M, Heijerman HG, Reijers M, van Ingen J, van der Ent CK. Risk factors for Mycobacterium abscessus infection in cystic fibrosis patients; a case-control study. J Cyst Fibros 2012; 11 (4) 340-343