Skip to main content
Log in

Dietary Effects on Drug Metabolism and Transport

  • Leading Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Metabolic food-drug interactions occur when the consumption of a particular food modulates the activity of a drug-metabolising enzyme system, resulting in an alteration of the pharmacokinetics of drugs metabolised by that system. A number of these interactions have been reported. Foods that contain complex mixtures of phytochemicals, such as fruits, vegetables, herbs, spices and teas, have the greatest potential to induce or inhibit the activity of drug-metabolising enzymes, although dietary macroconstituents (i.e. total protein, fat and carbohydrate ratios, and total energy intake) can also have effects. Particularly large interactions may result from the consumption of herbal dietary supplements.

Cytochrome P450 (CYP) 3A4 appears to be especially sensitive to dietary effects, as demonstrated by reports of potentially clinically important interactions involving orally administered drugs that are substrates of this enzyme. For example, interactions of grapefruit juice with cyclosporin and felodipine, St John’s wort with cyclosporin and indinavir, and red wine with cyclosporin, have the potential to require dosage adjustment to maintain drug concentrations within their therapeutic windows. The susceptibility of CYP3A4 to modulation by food constituents may be related to its high level of expression in the intestine, as well as its broad substrate specificity. Reported ethnic differences in the activity of this enzyme may be partly due to dietary factors.

Food-drug interactions involving CYP1A2, CYP2E1, glucuronosyltransferases and glutathione S-transferases have also been documented, although most of these interactions are modest in magnitude and clinically relevant only for drugs that have a narrow therapeutic range. Recently, interactions involving drug transporters, including P-glycoprotein and the organic anion transporting polypeptide, have also been identified. Further research is needed to determine the scope, magnitude and clinical importance of food effects on drug metabolism and transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II

Similar content being viewed by others

References

  1. Singh BN. Effects of food on clinical pharmacokinetics. Clin Pharmacokinet 1999; 37(3): 213–55

    Article  CAS  PubMed  Google Scholar 

  2. US Food and Drug Administration. Guidance for industry. Food-effect bioavailability and fed bioequivalence studies. Rockville, MD: Food and Drug Administration, 2002.

    Google Scholar 

  3. Walter-Sack I, Klotz U. Influence of diet and nutritional status on drug metabolism. Clin Pharmacokinet 1996; 31(1): 47–64

    Article  CAS  PubMed  Google Scholar 

  4. Rowland M, Tozer TN. Clinical pharmacokinetics: concepts and applications. 3rd ed. Media (PA): Williams & Wilkins, 1995

    Google Scholar 

  5. Conney AH, Buening MK, Pantuck EJ, et al. Regulation of human drug metabolism by dietary factors. Ciba Found Symp 1980; 76: 147–67

    CAS  PubMed  Google Scholar 

  6. Tsunoda SM, Velez RL, von Moltke LL, et al. Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther 1999; 66(5): 461–71

    Article  CAS  PubMed  Google Scholar 

  7. Varhe A, Olkkola KT, Neuvonen PJ. Oral triazolam is potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 56(6 Pt 1): 601–7

    Article  CAS  PubMed  Google Scholar 

  8. Kivisto KT, Kantola T, Neuvonen PJ. Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin. Br J Clin Pharmacol 1998; 46(1): 49–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Honig PK, Wortham DC, Zamani K, et al. Terfenadine-ketoconazole interaction: pharmacokinetic and electrocardiographic consequences [published erratum appears in JAMA 1993; 269: 2088]. JAMA 1993; 269(12): 1513–8

    Article  CAS  PubMed  Google Scholar 

  10. Raschetti R, Morgutti M, Menniti-Ippolito F, et al. Suspected adverse drug events requiring emergency department visits or hospital admissions. Eur J Clin Pharmacol 1999; 54(12): 959–63

    Article  CAS  PubMed  Google Scholar 

  11. Szoka PR, Edgren RA. Drug interactions with oral contraceptives: compilation and analysis of an adverse experience report database. Fertil Steril 1988; 49(5 Suppl. 2): 31S–8S

    CAS  PubMed  Google Scholar 

  12. Smith DA, Abel SM, Hyland R, et al. Human cytochrome P450s: selectivity and measurement in vivo. Xenobiotica 1998; 28(12): 1095–128

    Article  CAS  PubMed  Google Scholar 

  13. Flockhart DA. Cytochrome P450 drug interaction table [online]. Available from URL: http://medicine.iupui.edu/flockhart/ [Accessed 2003 Aug 4]

  14. Kullak-Ublick GA, Ismair MG, Stieger B, et al. Organic aniontransporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology 2001; 120: 525–33

    Article  CAS  PubMed  Google Scholar 

  15. HsiangB, Zhu Y, Wang Z, et al. A novel human hepatic organic anion transporting polypeptide (OATP2): identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J Biol Chem 1999; 274: 37161–8

    Article  Google Scholar 

  16. Tanigawara Y. Role of P-glycoprotein in drug disposition. Ther Drug Monit 2000; 22(1): 137–40

    Article  CAS  PubMed  Google Scholar 

  17. Miners JO, Mackenzie PI. Drug glucuronidation in humans. Pharmacol Ther 1991; 51(3): 347–69

    Article  CAS  PubMed  Google Scholar 

  18. Cvetkovic M, Leake B, Fromm MF, et al. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos 1999; 27: 866–71

    CAS  PubMed  Google Scholar 

  19. Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38(1): 41–57

    Article  CAS  PubMed  Google Scholar 

  20. Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol 1999; 39: 1–17

    Article  CAS  PubMed  Google Scholar 

  21. Hall SD, Thummel KE, Watkins PB, et al. Molecular and physical mechanisms of first-pass extraction. Drug Metab Dispos 1999; 27(2): 161–6

    CAS  PubMed  Google Scholar 

  22. Kolars JC, Lown KS, Schmiedlin-Ren P, et al. CYP3A gene expression in human gut epithelium. Pharmacogenetics 1994; 4(5): 247–59

    Article  CAS  PubMed  Google Scholar 

  23. Watkins PB. Drug metabolism by cytochromes P450 in the liver and small bowel. Gastroenterol Clin North Am 1992; 21(3): 511–26

    CAS  PubMed  Google Scholar 

  24. Gorski JC, Jones DR, Haehner-Daniels BD, et al. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 1998; 64(2): 133–43

    Article  CAS  PubMed  Google Scholar 

  25. Honig PK, Wortham DC, Zamani K, et al. Terfenadine-ketoconazole interaction: pharmacokinetic and electrocardiographic consequences. JAMA 1993; 269: 1513–8

    Article  CAS  PubMed  Google Scholar 

  26. Back DJ, Bates M, Bowden A, et al. The interaction of phenobarbital and other anticonvulsants with oral contraceptive steroid therapy. Contraception 1980; 22(5): 495–503

    Article  CAS  PubMed  Google Scholar 

  27. Offermann G, Keller F, Molzahn M. Low cyclosporin A blood levels and acute graft rejection in a renal transplant recipient during rifampin treatment. Am J Nephrol 1985; 5: 385–7

    Article  CAS  PubMed  Google Scholar 

  28. Tang W, Stearns RA. Heterotropic cooperativity of cytochrome P450 3A4 and potential drug-drug interactions. Curr Drug Metab 2001; 2(2): 185–98

    Article  CAS  PubMed  Google Scholar 

  29. Shou M, Lin Y, Lu P, et al. Enzyme kinetics of cytochrome P450-mediated reactions. Curr Drug Metab 2001; 2(1): 17–36

    Article  CAS  PubMed  Google Scholar 

  30. Schrag ML, Wienkers LC. Covalent alteration of the CYP3A4 active site: evidence for multiple substrate binding domains. Arch Biochem Biophys 2001; 391(1): 49–55

    Article  CAS  PubMed  Google Scholar 

  31. Ameer B, Weintraub RA. Drag interactions with grapefruit juice. Clin Pharmacokinet 1997; 33(2): 103–21

    Article  CAS  PubMed  Google Scholar 

  32. Bailey DG, Malcolm J, Arnold O, et al. Grapefruit juice-drug interactions. Br J Clin Pharmacol 1998; 46(2): 101–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fuhr U. Drug interactions with grapefruit juice: extent, probable mechanism and clinical relevance. Drag Saf 1998; 18(4): 251–72

    Article  CAS  Google Scholar 

  34. Ku YM, Min DI, Flanigan M. Effect of grapefruit juice on the pharmacokinetics of microemulsion cyclosporine and its metabolite in healthy volunteers: does the formulation difference matter?. J Clin Pharmacol 1998; 38(10): 959–65

    Article  CAS  PubMed  Google Scholar 

  35. Min DI, Ku YM, Perry PJ, et al. Effect of grapefruit juice on cyclosporine pharmacokinetics in renal transplant patients. Transplantation 1996; 62(1): 123–5

    Article  CAS  PubMed  Google Scholar 

  36. Proppe DG, Hoch OD, McLean AJ, et al. Influence of chronic ingestion of grapefruit juice on steady-state blood concentrations of cyclosporine A in renal transplant patients with stable graft function. Br J Clin Pharmacol 1995; 39(3): 337–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Benton RE, Honig PK, Zamani K, et al. Grapefruit juice alters terfenadine pharmacokinetics, resulting in prolongation of repolarization on the electrocardiogram. Clin Pharmacol Ther 1996; 59(4): 383–8

    Article  CAS  PubMed  Google Scholar 

  38. Clifford CP, Adams DA, Murray S, et al. The cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice. Eur J Clin Pharmacol 1997; 52(4): 311–5

    Article  CAS  PubMed  Google Scholar 

  39. Honig PK, Wortham DC, Lazarev A, et al. Grapefruit juice alters the systemic bioavailability and cardiac repolarization of terfenadine in poor metabolizers of terfenadine. J Clin Pharmacol 1996; 36(4): 345–51

    Article  CAS  PubMed  Google Scholar 

  40. Goho C. Oral midazolam-grapefrait juice drug interaction. Pediatr Dent 2001; 23(4): 365–6

    CAS  PubMed  Google Scholar 

  41. Kupferschmidt HH, Ha HR, Ziegler WH, et al. Interaction between grapefruit juice and midazolam in humans. Clin Pharmacol Ther 1995; 58(1): 20–8

    Article  CAS  PubMed  Google Scholar 

  42. Bailey DG, Arnold JM, Bend JR, et al. Grapefruit juicefelodipine interaction: reproducibility and characterization with the extended release drag formulation. Br J Clin Pharmacol 1995; 40(2): 135–40

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Edgar B, Bailey D, Bergstrand R, et al. Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics of felodipine: and its potential clinical relevance. Eur J Clin Pharmacol 1992; 42(3): 313–7

    Article  CAS  PubMed  Google Scholar 

  44. Lown KS, Bailey DG, Fontana RJ, et al. Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J Clin Invest 1997; 99(10): 2545–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feldman EB. How grapefruit juice potentiates drag bioavailability. Nutr Rev 1997; 55(11 Pt 1): 398–400

    CAS  PubMed  Google Scholar 

  46. Kane GC, Lipsky JJ. Drug-grapefruit juice interactions. Mayo Clin Proc 2000; 75(9): 933–42

    Article  CAS  PubMed  Google Scholar 

  47. Lilja JJ, Kivisto KT, Backman JT, et al. Effect of grapefruit juice dose on grapefruit juice-triazolam interaction: repeated consumption prolongs triazolam half-life. Eur J Clin Pharmacol 2000 Aug; 56(5): 411–5

    Article  CAS  PubMed  Google Scholar 

  48. Malhotra S, Bailey DG, Paine MF, et al. Seville orange juice-felodipine interaction: comparison with dilute grapefruit juice and involvement of furocoumarins. Clin Pharmacol Ther 2001; 69(1): 14–23

    Article  CAS  PubMed  Google Scholar 

  49. Backman JT, Maenpaa J, Belle DJ, et al. Lack of correlation between in vitro and in vivo studies on the effects of tangeretin and tangerine juice on midazolam hydroxylation. Clin Pharmacol Ther 2000; 67(4): 382–90

    Article  CAS  PubMed  Google Scholar 

  50. Edwards DJ, Fitzsimmons ME, Schuetz EG, et al. 6′,7′-Dihydroxybergamottin in grapefruit juice and Seville orange juice: effects on cyclosporine disposition, enterocyte CYP3A4, and P-glycoprotein. Clin Pharmacol Ther 1999; 65(3): 237–44

    Article  CAS  PubMed  Google Scholar 

  51. Wollin SD, Jones PJ. Alcohol, red wine and cardiovascular disease. J Nutr 2001; 131(5): 1401–4

    CAS  PubMed  Google Scholar 

  52. Mukamal KJ, Maclure M, Muller JE, et al. Prior alcohol consumption and mortality following acute myocardial infarction. JAMA 2001; 285(15): 1965–70

    Article  CAS  PubMed  Google Scholar 

  53. de Lorimier AA. Alcohol, wine, and health. Am J Surg 2000; 180(5): 357–61

    Article  PubMed  Google Scholar 

  54. Renaud S, Gueguen R. The French paradox and wine drinking. Novartis Found Symp 1998; 216: 208–17

    CAS  PubMed  Google Scholar 

  55. Chan WK, Nguyen LT, Miller VP, et al. Mechanism-based inactivation of human cytochrome P450 3A4 by grapefruit juice and red wine. Life Sci 1998; 62(10): L135–42

    Article  Google Scholar 

  56. Chang TK, Yeung RK. Effect of trans-resveratrol on 7-benzyloxy-4-trifluoromethylcoumarin O-dealkylation catalyzed by human recombinant CYP3A4 and CYP3A5. Can J Physiol Pharmacol 2001; 79(3): 220–6

    Article  CAS  PubMed  Google Scholar 

  57. Chan WK, Delucchi AB. Resveratrol, a red wine constituent, is a mechanism-based inactivator of cytochrome P450 3A4. Life Sci 2000; 67(25): 3103–12

    Article  CAS  PubMed  Google Scholar 

  58. Piver B, Berthou F, Dreano Y, et al. Inhibition of CYP3A, CYP1A and CYP2E1 activities by resveratrol and other non volatile red wine components. Toxicol Lett 2001; 125(1–3): 83–91

    Article  CAS  PubMed  Google Scholar 

  59. Tsunoda SM, Harris RZ, Christians U, et al. Red wine decreases cyclosporine bioavailability. Clin Pharmacol Ther 2001; 70(5): 462–7

    Article  CAS  PubMed  Google Scholar 

  60. Tsunoda SM, Harris RZ, Freeman RB, et al. Acute and chronic wine effects on cyclosporine (CYA) disposition. Br J Clin Pharmacol 2000, 42

  61. Offman EM, Freeman DJ, Dresser GK, et al. Red winecisapride interaction: comparison with grapefruit juice. Clin Pharmacol Ther 2001; 70(1): 17–23

    Article  CAS  PubMed  Google Scholar 

  62. Nelson L, Perrone J. Herbal and alternative medicine. Emerg Med Clin North Am 2000; 18(4): 709–22

    Article  CAS  PubMed  Google Scholar 

  63. Izzo AA, Ernst E. Interactions between herbal medicines and prescribed drags: a systematic review. Drags 2001; 61(15): 2163–75

    Article  CAS  Google Scholar 

  64. Barone GW, Gurley BJ, Ketel BL, et al. Drug interaction between St John’s wort and cyclosporine. Ann Pharmacother 2000; 34(9): 1013–6

    Article  CAS  PubMed  Google Scholar 

  65. Ruschitzka F, Meier PJ, Turina M, et al. Acute heart transplant rejection due to Saint John’s wort. Lancet 2000; 355(9203): 548–9

    Article  CAS  PubMed  Google Scholar 

  66. Karliova M, Treichel U, Malago M, et al. Interaction of Hypericum perforatum (St John’s wort) with cyclosporin A metabolism in a patient after liver transplantation. J Hepatol 2000; 33(5): 853–5

    Article  CAS  PubMed  Google Scholar 

  67. Breidenbach T, Kliem V, Burg M, et al. Profound drop of cyclosporin A whole blood trough levels caused by St John’s wort (Hypericum perforatum). Transplantation 2000; 69(10): 2229–30

    Article  CAS  PubMed  Google Scholar 

  68. Piscitelli SC, Burstein AH, ChaittD, et al. Indinavir concentrations and St John’s wort [published erratum appears in Lancet 2001; 357: 1210]. Lancet 2000; 355(9203): 547–8

    Article  CAS  PubMed  Google Scholar 

  69. Gorski JC, Hamman MA, Wang Z, et al. The effect of St John’s wort on the efficacy of oral contraception [abstract]. Clin Pharmacol Ther 2002; 71(2): P25

    Google Scholar 

  70. Markowitz JS, DeVane CL, Boulton DW, et al. Effect of St John’s wort (Hypericum perforatum) on cytochrome P-450 2D6 and 3A4 activity in healthy volunteers. Life Sci 2000; 66(9): L133–9

    Article  Google Scholar 

  71. Wang Z, Gorski JC, Hamman MA, et al. The effects of St John’s wort (Hypericum perforatum) on human cytochrome P450 activity. Clin Pharmacol Ther 2001; 70(4): 317–26

    CAS  PubMed  Google Scholar 

  72. Moore LB, Goodwin B, Jones SA, et al. St John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc Natl Acad Sci U S A 2000; 97(13): 7500–2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Foster BC, Foster MS, Vandenhoek S, et al. An in vitro evaluation of human cytochrome P450 3A4 and P-glycoprotein inhibition by garlic. J Pharm Pharm Sci 2001; 4(2): 176–84

    CAS  PubMed  Google Scholar 

  74. Piscitelli SC, Burstein AH, Weiden N, et al. The effect of garlic supplements on the pharmacokinetics of saquinavir. Clin Infect Dis 2002; 34(2): 234–8

    Article  PubMed  Google Scholar 

  75. Ahsan CH, Renwick AG, Waller DG, et al. The influence of dose and ethnic origins on the pharmacokinetics of nifedipine. Clin Pharmacol Ther 1993; 54(3): 329–38

    Article  CAS  PubMed  Google Scholar 

  76. Rashid TJ, Martin U, Clarke H, et al. Factors affecting the absolute bioavailability of nifedipine. Br J Clin Pharmacol 1995; 40(1): 51–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yu KS, Cho JY, Shon JH, et al. Ethnic differences and relationships in the oral pharmacokinetics of nifedipine and erythro-mycin. Clin Pharmacol Ther 2001; 70(3): 228–36

    Article  CAS  PubMed  Google Scholar 

  78. Kinirons MT, Lang CC, He HB, et al. Triazolam pharmacokinetics and pharmacodynamics in Caucasians and Southern Asians: ethnicity and CYP3A activity. Br J Clin Pharmacol 1996; 41(1): 69–72

    Article  CAS  PubMed  Google Scholar 

  79. Ahsan CH, Renwick AG, Macklin B, et al. Ethnic differences in the pharmacokinetics of oral nifedipine. Br J Clin Pharmacol 1991; 31(4): 399–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stein CM, Sadeque AJ, Murray JJ, et al. Cyclosporine pharmacokinetics and pharmacodynamics in African American and white subjects. Clin Pharmacol Ther 2001; 69(5): 317–23

    Article  CAS  PubMed  Google Scholar 

  81. Wandel C, Witte JS, Hall JM, et al. CYP3A activity in African American and European American men: population differences and functional effect of the CYP3A4*1B 5′-promoter region polymorphism. Clin Pharmacol Ther 2000; 68(1): 82–91

    Article  CAS  PubMed  Google Scholar 

  82. Castaneda-Hernandez G, Palma-Aguirre JA, Montoya-Cabrera MA, et al. Interethnic variability in nifedipine disposition: reduced systemic plasma clearance in Mexican subjects. Br J Clin Pharmacol 1996; 41(5): 433–4

    CAS  PubMed  Google Scholar 

  83. Palma-Aguirre JA, Gonzalez-Llaven J, Flores-Murrieta FJ, et al. Bioavailability of oral cyclosporine in healthy Mexican volunteers: evidence for interethnic variability. J Clin Pharmacol 1997; 37(7): 630–4

    Article  CAS  PubMed  Google Scholar 

  84. Miners JO, McKinnon RA. CYP1A. In: Levy RH, Thummel KE, Trager WF, et al., editors. Metabolic drug interactions. Philadelphia: Lippincott Williams & Wilkins, 2000: 61–73

    Google Scholar 

  85. Jang GR, Maurel JP. Rifampin, dexamethasone, and omeprazole. In: Levy RH, Thummel KE, Trager WF, et al., editors. Metabolic drug interactions. Philadelphia (PA): Lippincott Williams & Wilkins, 2000: 691–706

    Google Scholar 

  86. Ayalogu EO, Snelling J, Lewis DF, et al. Induction of hepatic CYP1A2 by the oral administration of caffeine to rats: lack of association with the Ah locus. Biochim Biophys Acta 1995; 1272(2): 89–94

    Article  PubMed  Google Scholar 

  87. Chen L, Bondoc FY, Lee MJ, et al. Caffeine induces cytochrome P4501A2: induction of CYP1A2 by tea in rats. Drug Metab Dispos 1996; 24(5): 529–33

    CAS  PubMed  Google Scholar 

  88. Goasduff T, Dreano Y, Guillois B, et al. Induction of liver and kidney CYP1A1/1A2 by caffeine in rat. Biochem Pharmacol 1996; 52(12): 1915–9

    Article  CAS  PubMed  Google Scholar 

  89. Caraco Y, Zylber-Katz E, Granit L, et al. Does restriction of caffeine intake affect mixed function oxidase activity and caffeine metabolism?. Biopharm Drug Dispos 1990; 11(7): 639–43

    Article  CAS  PubMed  Google Scholar 

  90. Fuhr U, Kummert AL. The fate of naringin in humans: a key to grapefruit juice-drug interactions?. Clin Pharmacol Ther 1995; 58(4): 365–73

    Article  CAS  PubMed  Google Scholar 

  91. Fuhr U, Klittich K, Staib AH. Inhibitory effect of grapefruit juice and its bitter principal, naringenin, on CYP1A2 dependent metabolism of caffeine in man. Br J Clin Pharmacol 1993; 35(4): 431–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tassaneeyakul W, Guo LQ, Fukuda K, et al. Inhibition selectivity of grapefruit juice components on human cytochromes P450. Arch Biochem Biophys 2000; 378(2): 356–63

    Article  CAS  PubMed  Google Scholar 

  93. Fuhr U, Maier A, Keller A, et al. Lacking effect of grapefruit juice on theophylline pharmacokinetics. Int J Clin Pharmacol Ther 1995; 33(6): 311–4

    CAS  PubMed  Google Scholar 

  94. Maish WA, Hampton EM, Whitsett TL, et al. Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics. Pharmacotherapy 1996; 16(6): 1046–52

    CAS  PubMed  Google Scholar 

  95. Lane HY, Jann MW, Chang YC, et al. Repeated ingestion of grapefruit juice does not alter clozapine’s steady-state plasma levels, effectiveness, and tolerability. J Clin Psychiatry 2001; 62(10): 812–7

    Article  CAS  PubMed  Google Scholar 

  96. Xiao DS, Zhi PZ, Zhong XW, et al. Possible enhancement of the first-pass metabolism of phenacetin by ingestion of grape juice in Chinese subjects. Br J Clin Pharmacol 1999; 48(4): 638–40

    Article  Google Scholar 

  97. Buening MK, Chang RL, Huang MT, et al. Activation and inhibition of benzo(a)pyrene and aflatoxin B1 metabolism in human liver microsomes by naturally occurring flavonoids. Cancer Res 1981; 41(1): 67–72

    CAS  PubMed  Google Scholar 

  98. Ekins S, Ring BJ, Binkley SN, et al. Autoactivation and activation of the cytochrome P450s. Int J Clin Pharmacol Ther 1998; 36(12): 642–51

    CAS  PubMed  Google Scholar 

  99. Raaflaub J, Dubach UC. On the pharmacokinetics of phenacetin in man. Eur J Clin Pharmacol 1975; 8(3–4): 261–5

    Article  CAS  PubMed  Google Scholar 

  100. Loub WD, Wattenberg LW, Davis DW. Aryl hydrocarbon hydroxylase induction in rat tissues by naturally occurring indoles of cruciferous plants. J Natl Cancer Inst 1975; 54(4): 985–8

    CAS  PubMed  Google Scholar 

  101. Pantuck EJ, Hsiao KC, Loub WD, et al. Stimulatory effect of vegetables on intestinal drug metabolism in the rat. J Pharmacol Exp Ther 1976; 198(2): 278–83

    CAS  PubMed  Google Scholar 

  102. Pantuck EJ, Pantuck CB, Garland WA, et al. Stimulatory effect of brussels sprouts and cabbage on human drug metabolism. Clin Pharmacol Ther 1979; 25(1): 88–95

    Article  CAS  PubMed  Google Scholar 

  103. Vistisen K, Poulsen HE, Loft S. Foreign compound metabolism capacity in man measured from metabolites of dietary caffeine. Carcinogenesis 1992; 13(9): 1561–8

    Article  CAS  PubMed  Google Scholar 

  104. Kall MA, Vang O, Clausen J. Effects of dietary broccoli on human in vivo drug metabolizing enzymes: evaluation of caffeine, oestrone and chlorzoxazone metabolism. Carcinogenesis 1996; 17(4): 793–9

    Article  CAS  PubMed  Google Scholar 

  105. Bonnesen C, Stephensen PU, Andersen O, et al. Modulation of cytochrome P-450 and glutathione S-transferase isoform expression in vivo by intact and degraded indolyl glucosinolates. Nutr Cancer 1999; 33(2): 178–87

    Article  CAS  PubMed  Google Scholar 

  106. Lampe JW, King IB, Li S, et al. Brassica vegetables increase and apiaceous vegetables decrease cytochrome P450 1A2 activity in humans: changes in caffeine metabolite ratios in response to controlled vegetable diets. Carcinogenesis 2000; 21(6): 1157–62

    Article  CAS  PubMed  Google Scholar 

  107. Knize MG, Salmon CP, Pais P, et al. Food heating and the formation of heterocyclic aromatic amine and polycyclic aromatic hydrocarbon mutagens/carcinogens. Adv Exp Med Biol 1999; 459: 179–93

    Article  CAS  PubMed  Google Scholar 

  108. Sugimura T. Nutrition and dietary carcinogens. Carcinogenesis 2000; 21(3): 387–95

    Article  CAS  PubMed  Google Scholar 

  109. Conney AH, Pantuck EJ, Hsiao KC, et al. Enhanced phenacetin metabolism in human subjects fed charcoal-broiled beef. Clin Pharmacol Ther 1976; 20(6): 633–42

    Article  CAS  PubMed  Google Scholar 

  110. Sinha R, Rothman N, Brown ED, et al. Pan-fried meat containing high levels of heterocyclic aromatic amines but low levels of polycyclic aromatic hydrocarbons induces cytochrome P4501A2 activity in humans. Cancer Res 1994; 54(23): 6154–9

    CAS  PubMed  Google Scholar 

  111. Fontana RJ, Lown KS, Paine MF, et al. Effects of a chargrilled meat diet on expression of CYP3A, CYP1 A, and P-glycoprotein levels in healthy volunteers. Gastroenterology 1999; 117(1): 89–98

    Article  CAS  PubMed  Google Scholar 

  112. Turesky RJ, Lang NP, Butler MA, et al. Metabolic activation of carcinogenic heterocyclic aromatic amines by human liver and colon. Carcinogenesis 1991; 12(10): 1839–45

    Article  CAS  PubMed  Google Scholar 

  113. Hein DW, Doll MA, Rustan TD, et al. Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic NAT2 acetyltransferases. Carcinogenesis 1993; 14(8): 1633–8

    Article  CAS  PubMed  Google Scholar 

  114. Boobis AR, Lynch AM, Murray S, et al. CYP1A2-catalyzed conversion of dietary heterocyclic amines to their proximate carcinogens is their major route of metabolism in humans. Cancer Res 1994; 54(1): 89–94

    CAS  PubMed  Google Scholar 

  115. Steinkellner H, Rabot S, Freywald C, et al. Effects of cruciferous vegetables and their constituents on drug metabolizing enzymes involved in the bioactivation of DNA-reactive dietary carcinogens. Mutat Res 2001; 480(SI): 285–97

    Article  PubMed  Google Scholar 

  116. Le Marchand L, Hankin JH, Wilkens LR, et al. Combined effects of well-done red meat, smoking, and rapid N-Acetyl-transferase 2 and CYP1A2 phenotypes in increasing colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2001; 10(12): 1259–66

    PubMed  Google Scholar 

  117. Raucy J, Carpenter SP. CYP2E1. In: Levy RH, Thummel KE, Trager WF, et al., editors. Metabolic drug interactions. Philadelphia (PA): Lippincott Williams & Wilkins, 2000: 95–114

    Google Scholar 

  118. Peter R, Bocker R, Beaune PH, et al. Hydroxylation of chlorzoxazone as a specific probe for human liver cytochrome P-450IIE1. Chem Res Toxicol 1990; 3: 566–73

    Article  CAS  PubMed  Google Scholar 

  119. Raucy JL, Lasker JM, Lieber CS, et al. Acetaminophen activation by human liver cytochromes P450IIE1 and P450IA2. Arch Biochem Biophys 1989; 271: 270–83

    Article  CAS  PubMed  Google Scholar 

  120. Styles JA, Davies A, Lim CK, et al. Genotoxicity of tamoxifen, tamoxifen epoxide and toremifene in human lymphoblastoid cells containing human cytochrome P450s. Carcinogenesis 1994; 15: 5–9

    Article  CAS  PubMed  Google Scholar 

  121. Guengerich FP, Kim DH, Iwasaki M. Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol 1991; 4: 168–79

    Article  CAS  PubMed  Google Scholar 

  122. Girre C, Lucas D, Hispard E, et al. Assessment of cytochrome P4502E1 induction in alcoholic patients by chlorzoxazone pharmacokinetics. Biochem Pharmacol 1994; 47(9): 1503–8

    Article  CAS  PubMed  Google Scholar 

  123. de la Maza MP, Hirsch S, Petermann M, et al. Changes in microsomal activity in alcoholism and obesity. Alcohol Clin Exp Res 2000; 24(5): 605–10

    Article  PubMed  Google Scholar 

  124. Lucas D, Menez C, Girre C, et al. Decrease in cytochrome P4502E1 as assessed by the rate of chlorzoxazone hydroxylation in alcoholics during the withdrawal phase. Alcohol Clin Exp Res 1995; 19(2): 362–6

    Article  CAS  PubMed  Google Scholar 

  125. Zaher H, Buters JT, Ward JM, et al. Protection against acetaminophen toxicity in CYP1A2 and CYP2E1 double-null mice. Toxicol Appl Pharmacol 1998; 152(1): 193–9

    Article  CAS  PubMed  Google Scholar 

  126. Sinclair J, Jeffery E, Wrighton S, et al. Alcohol-mediated increases in acetaminophen hepatotoxicity: role of CYP2E and CYP3A. Biochem Pharmacol 1998; 55(10): 1557–65

    Article  CAS  PubMed  Google Scholar 

  127. McClain CJ, Price S, Barve S, et al. Acetaminophen hepatotoxicity: an update. Curr Gastroenterol Rep 1999; 1(1): 42–9

    Article  CAS  PubMed  Google Scholar 

  128. Prescott LF. Paracetamol, alcohol and the liver. Br J Clin Pharmacol 2000; 49(4): 291–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bessems JG, Vermeulen NP. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 2001; 31(1): 55–138

    Article  CAS  PubMed  Google Scholar 

  130. Thummel KE, Slattery JT, Ro H, et al. Ethanol and production of the hepatotoxic metabolite of acetaminophen in healthy adults. Clin Pharmacol Ther 2000; 67(6): 591–9

    Article  CAS  PubMed  Google Scholar 

  131. Kroemer HK, Gautier JC, Beaune P, et al. Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol 1993; 348(3): 332–7

    Article  CAS  PubMed  Google Scholar 

  132. Busse D, Cosme J, Beaune P, et al. Cytochromes of the P450 2C subfamily are the major enzymes involved in the O-demethylation of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol 1995; 353(1): 116–21

    Article  CAS  PubMed  Google Scholar 

  133. Ammon E, Klotz U. In-vitro assessment of a possible verapamil/ethanol interaction [abstract]. Naunyn Schmiedebergs Arch Pharmacol 1997; 355: (R123)

    Google Scholar 

  134. Zacny JP, Yajnik S. Effects of calcium channel inhibitors on ethanol effects and pharmacokinetics in healthy volunteers. Alcohol 1993; 10(6): 505–9

    Article  CAS  PubMed  Google Scholar 

  135. Perez-Reyes M, White WR, Hicks RE. Interaction between ethanol and calcium channel blockers in humans. Alcohol Clin Exp Res 1992; 16(4): 769–75

    Article  CAS  PubMed  Google Scholar 

  136. Bauer LA, Schumock G, Horn J, et al. Verapamil inhibits ethanol elimination and prolongs the perception of intoxication. Clin Pharmacol Ther 1992; 52(1): 6–10

    Article  CAS  PubMed  Google Scholar 

  137. Hecht SS. Inhibition of carcinogenesis by isothiocyanates. Drug Metab Rev 2000; 32(3–4): 395–411

    Article  CAS  PubMed  Google Scholar 

  138. Leclercq I, Desager JP, Horsmans Y. Inhibition of chlorzoxazone metabolism, a clinical probe for CYP2E1, by a single ingestion of watercress. Clin Pharmacol Ther 1998; 64(2): 144–9

    Article  CAS  PubMed  Google Scholar 

  139. Nakajima M, Yoshida R, Shimada N, et al. Inhibition and inactivation of human cytochrome P450 isoforms by phenethyl isothiocyanate. Drug Metab Dispos 2001; 29(8): 1110–3

    CAS  PubMed  Google Scholar 

  140. Marchand LL, Wilkinson GR, Wilkens LR. Genetic and dietary predictors of CYP2E1 activity: a phenotyping study in Hawaii Japanese using chlorzoxazone. Cancer Epidemiol Biomarkers Prev 1999; 8(6): 495–500

    CAS  PubMed  Google Scholar 

  141. O’shea D, Davis SN, Kim RB, et al. Effect of fasting and obesity in humans on the 6-hydroxylation of chlorzoxazone: a putative probe of CYP2E1 activity. Clin Pharmacol Ther 1994; 56(4): 359–67

    Article  PubMed  Google Scholar 

  142. Leclercq I, Horsmans Y, Desager JP, et al. Dietary restriction of energy and sugar results in a reduction in human cytochrome P450 2E1 activity. Br J Nutr 1999; 82(4): 257–62

    CAS  PubMed  Google Scholar 

  143. Tephly TR, Green MD. UDP-glucuronosyltransferases. In: Levy RH, Thummel KE, Trager WF, et al., editors. Metabolic drug interactions. Philadelphia (PA): Lippincott Williams & Wilkins, 2000: 161–74

    Google Scholar 

  144. Eaton DL, Bammler TK. Glutathione S-transferases. In: Levy RH, Thummel KE, Trager WF, et al., editors. Metabolic drug interactions. Philadelphia (PA): Lippincott Williams & Wilkins, 2000: 175–90

    Google Scholar 

  145. Pantuck EJ, Pantuck CB, Anderson KE, et al. Effect of brussels sprouts and cabbage on drug conjugation. Clin Pharmacol Ther 1984; 35(2): 161–9

    Article  CAS  PubMed  Google Scholar 

  146. Court MH, Duan SX, von Moltke LL, et al. Interindividual variability in acetaminophen glucuronidation by human liver microsomes: identification of relevant acetaminophen UDP-glucuronosyltransferase isoforms. J Pharmacol Exp Ther 2001; 299(3): 998–1006

    CAS  PubMed  Google Scholar 

  147. Patel M, Tang BK, Kalow W. (S)-Oxazepam glucuronidation is inhibited by ketoprofen and other substrates of UGT2B7. Pharmacogenetics 1995; 5(1): 43–9

    Article  CAS  PubMed  Google Scholar 

  148. Coffman BL, King CD, Rios GR, et al. The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y(268) and UGT2B7H(268). Drug Metab Dispos 1998; 26(1): 73–7

    CAS  PubMed  Google Scholar 

  149. Hecht SS, Carmella SG, Murphy SE. Effects of watercress consumption on urinary metabolites of nicotine in smokers. Cancer Epidemiol Biomarkers Prev 1999; 8(10): 907–13

    CAS  PubMed  Google Scholar 

  150. Bogaards JJ, Verhagen H, Willems MI, et al. Consumption of Brussels sprouts results in elevated alpha-class glutathione S-transferase levels in human blood plasma. Carcinogenesis 1994; 15(5): 1073–5

    Article  CAS  PubMed  Google Scholar 

  151. Nijhoff WA, Mulder TP, Verhagen H, et al. Effects of consumption of brussels sprouts on plasma and urinary glutathione S-transferase class-alpha and -pi in humans. Carcinogenesis 1995; 16(4): 955–7

    Article  CAS  PubMed  Google Scholar 

  152. Nijhoff WA, Grubben MJ, Nagengast FM, et al. Effects of consumption of Brussels sprouts on intestinal and lymphocytic glutathione S-transferases in humans. Carcinogenesis 1995; 16(9): 2125–8

    Article  CAS  PubMed  Google Scholar 

  153. Lampe JW, Chen C, Li S, et al. Modulation of human glutathione S-transferases by botanically defined vegetable diets. Cancer Epidemiol Biomarkers Prev 2000; 9(8): 787–93

    CAS  PubMed  Google Scholar 

  154. Benet LZ, Cummins CL. The drug efflux-metabolism alliance: biochemical aspects. Adv Drug Deliv Rev 2001; 50(1 Suppl.): 3S–11S

    Article  Google Scholar 

  155. Spahn-Langguth H, Langguth P. Grapefruit juice enhances intestinal absorption of the P-glycoprotein substrate talinolol. Eur J Pharm Sci 2001; 12(4): 361–7

    Article  CAS  PubMed  Google Scholar 

  156. Bistrup C, Nielsen FT, Jeppesen UE, et al. Effect of grapefruit juice on Sandimmun Neoral absorption among stable renal allograft recipients. Nephrol Dial Transplant 2001; 16(2): 373–7

    Article  CAS  PubMed  Google Scholar 

  157. Becquemont L, Verstuyft C, Kerb R, et al. Effect of grapefruit juice on digoxin pharmacokinetics in humans. Clin Pharmacol Ther 2001; 70(4): 311–6

    CAS  PubMed  Google Scholar 

  158. Westphal K, Weinbrenner A, Giessmann T, et al. Oral bioavailability of digoxin is enhanced by talinolol: evidence for involvement of intestinal P-glycoprotein. Clin Pharmacol Ther 2000; 68(1): 6–12

    Article  CAS  PubMed  Google Scholar 

  159. Boyd RA, Stern RH, Stewart BH, et al. Atorvastatin coadministration may increase digoxin concentrations by inhibition of intestinal P-glycoprotein-mediated secretion. J Clin Pharmacol 2000; 40(1): 91–8

    Article  CAS  PubMed  Google Scholar 

  160. Dresser GK, Bailey DG, Leake BF, et al. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin Pharmacol Ther 2002; 71(1): 11–20

    Article  CAS  PubMed  Google Scholar 

  161. Johne A, Brockmoller J, Bauer S, et al. Pharmacokinetic interaction of digoxin with an herbal extract from St John’s wort (Hypericum perforatum). Clin Pharmacol Ther 1999; 66(4): 338–45

    Article  CAS  PubMed  Google Scholar 

  162. Kovarik JM, Rigaudy L, Guerret M, et al. Longitudinal assessment of a P-glycoprotein-mediated drug interaction of valspodar on digoxin. Clin Pharmacol Ther 1999; 66(4): 391–400

    Article  CAS  PubMed  Google Scholar 

  163. GreinerB, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 1999; 104(2): 147–53

    Article  Google Scholar 

  164. Durr D, Stieger B, Kullak-Ublick GA, et al. St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther 2000; 68(6): 598–604

    Article  CAS  PubMed  Google Scholar 

  165. Krishnaswamy K, Kalamegham R, Naidu NA. Dietary influences on the kinetics of antipyrine and aminopyrine in human subjects. Br J Clin Pharmacol 1984; 17(2): 139–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kappas A, Anderson KE, Conney AH, et al. Influence of dietary protein and carbohydrate on antipyrine and theophyl-line metabolism in man. Clin Pharmacol Ther 1976; 20(6): 643–53

    Article  CAS  PubMed  Google Scholar 

  167. Fagan TC, Walle T, Oexmann MJ, et al. Increased clearance of propranolol and theophylline by high-protein compared with high-carbohydrate diet. Clin Pharmacol Ther 1987; 41(4): 402–6

    Article  CAS  PubMed  Google Scholar 

  168. Jorquera F, Almar M, Martinez C, et al. Antipyrine clearance in surgical patients maintained on hypocaloric peripheral paren-teral nutrition. JPEN J Parenter Enterai Nutr 1994; 18(6): 544–8

    Article  CAS  Google Scholar 

  169. Burgess P, Hall RI, Bateman DN, et al. The effect of total parenteral nutrition on hepatic drug oxidation. JPEN J Parenter Enterai Nutr 1987; 11(6): 540–3

    Article  CAS  Google Scholar 

  170. Hoensch HP, Steinhardt HJ, Weiss G, et al. Effects of semisynthetic diets on xenobiotic metabolizing enzyme activity and morphology of small intestinal mucosa in humans. Gastroenterology 1984; 86(6): 1519–30

    CAS  PubMed  Google Scholar 

  171. Maliakal PP, Wanwimolruk S. Effect of herbal teas on hepatic drug metabolizing enzymes in rats. J Pharm Pharmacol 2001; 53(10): 1323–9

    Article  CAS  PubMed  Google Scholar 

  172. Kusamran WR, Ratanavila A, Tepsuwan A. Effects of neem flowers, Thai and Chinese bitter gourd fruits and sweet basil leaves on hepatic monooxygenases and glutathione S-transferase activities, and in vitro metabolic activation of chemical carcinogens in rats. Food Chem Toxicol 1998; 36(6): 475–84

    Article  CAS  PubMed  Google Scholar 

  173. Sohn OS, Surace A, Fiala ES, et al. Effects of green and black tea on hepatic xenobiotic metabolizing systems in the male F344 rat. Xenobiotica 1994; 24(2): 119–27

    Article  CAS  PubMed  Google Scholar 

  174. Obermeier MT, White RE, Yang CS. Effects of bioflavonoids on hepatic P450 activities. Xenobiotica 1995; 25(6): 575–84

    Article  CAS  PubMed  Google Scholar 

  175. Umegaki K, Ikegami S. Feeding fish oil to rats accelerates the metabolism of hexachlorobenzene. J Nutr Sci Vitaminol (Tokyo) 1998; 44(2): 301–11

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Z. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, R.Z., Jang, G.R. & Tsunoda, S. Dietary Effects on Drug Metabolism and Transport. Clin Pharmacokinet 42, 1071–1088 (2003). https://doi.org/10.2165/00003088-200342130-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200342130-00001

Keywords

Navigation