Skip to main content
Log in

Current Status and Future Directions of Gene and Cell Therapy for Cystic Fibrosis

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Although the development of gene therapy for cystic fibrosis (CF) was high priority for many groups in academia and industry in the first 10–15 years after cloning the cystic fibrosis transmembrane conductance regulator (CFTR) gene, more recently active research into CF gene therapy is only being performed by a small number of committed groups. However, despite the waning enthusiasm, which is largely due to the realization that gene transfer into lungs is more difficult than originally thought, and the fact that meaningful clinical trials are expensive and difficult to perform, gene therapy continues to hold promise for the treatment of CF lung disease. Problems related to repeat administration of adenovirus and adeno-associated virus-based vectors led to a focus on non-viral vectors in clinical trials. However, the recent evidence that lentiviral vectors may be able to evade the immune system and, thereby, allow for repeat administration and long-lasting expression opens new doors for the use of viral vectors in the context of CF gene therapy. In addition, early pre-clinical studies have recently been initiated to address cell therapy-based approaches for CF. In this review, we discuss recent developments with viral and non-viral vectors and cell therapy, and provide an update on clinical gene therapy studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989 Sep 8; 245(4922): 1066–73

    Article  PubMed  CAS  Google Scholar 

  2. Boucher RC. Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu Rev Med 2007; 58: 157–70

    Article  PubMed  CAS  Google Scholar 

  3. Welsh M, Ramsey BW, Accurso F, et al. The molecular and metabolic basis of inherited disease. In: Scriver CR, Beaudet AL, Sly WS, et al., editors. Cystic fibrosis. New York: McGraw-Hill, 2001: 5121–88

    Google Scholar 

  4. Sanders N, Rudolph C, Braeckmans K, et al. Extracellular barriers in respiratory gene therapy. Adv Drug Deliv Rev 2009 Feb 27; 61(2): 115–27

    Article  PubMed  CAS  Google Scholar 

  5. Chu CS, Trapnell BC, Curristin S, et al. Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat Genet 1993 Feb; 3(2): 151–6

    Article  PubMed  CAS  Google Scholar 

  6. Johnson LG, Olsen JC, Sarkadi B, et al. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet 1992 Sep; 2(1): 21–5

    Article  PubMed  CAS  Google Scholar 

  7. Farmen SL, Karp PH, Ng P, et al. Gene transfer of CFTR to airway epithelia: low levels of expression are sufficient to correct Cl−transport and overexpression can generate basolateral CFTR. Am J Physiol Lung Cell Mol Physiol 2005 Dec; 289(6): L1 123–30

    Article  CAS  Google Scholar 

  8. Johnson LG, Boyles SE, Wilson J, et al. Normalization of raised sodium absorption and raised calcium-mediated chloride secretion by adenovirusmediated expression of cystic fibrosis transmembrane conductance regulator in primary human cystic fibrosis airway epithelial cells. J Clin Invest 1995 Mar; 95(3): 1377–82

    Article  PubMed  CAS  Google Scholar 

  9. Pringle IA, Hyde SC, Gill DR. Non-viral vectors in cystic fibrosis gene therapy: recent developments and future prospects. Expert Opin Biol Ther 2009 Aug; 9(8): 991–1003

    Article  PubMed  CAS  Google Scholar 

  10. Griesenbach U, Alton EW. Gene transfer to the lung: lessons learned from more than 2 decades of CF gene therapy. Adv Drug Deliv Rev 2009 Feb 27; 61(2): 128–39

    Article  PubMed  CAS  Google Scholar 

  11. Alton EW, Stern M, Farley R, et al. Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial. Lancet 1999 Mar 20; 353(9157): 947–54

    Article  PubMed  CAS  Google Scholar 

  12. Griesenbach U, McLachlan G, Owaki T, et al. Validation of recombinant Sendai virus in a non-natural host model. Gene Ther. Epub 2010 Oct 21

  13. Griesenbach U, Sumner-Jones SG, Holder E, et al. Limitations of the murine nose in the development of nonviral airway gene transfer. Am J Respir Cell Mol Biol 2010 Jul; 43(1): 46–54

    Article  PubMed  CAS  Google Scholar 

  14. Hyde SC, Pringle IA, Abdullah S, et al. CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat Biotechnol 2008 May; 26(5): 549–51

    Article  PubMed  CAS  Google Scholar 

  15. Xenariou S, Griesenbach U, Ferrari S, et al. Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo. Gene Ther 2006 Nov; 13(21): 1545–52

    Article  PubMed  CAS  Google Scholar 

  16. Xenariou S, Griesenbach U, Liang HD, et al. Use of ultrasound to enhance nonviral lung gene transfer in vivo. Gene Ther 2007 May; 14(9): 768–74

    Article  PubMed  CAS  Google Scholar 

  17. Griesenbach U, Meng C, Farley R, et al. The role of doxorubicin in non-viral gene transfer in the lung. Biomaterials 2009 Apr; 30(10): 1971–7

    Article  PubMed  CAS  Google Scholar 

  18. Griesenbach U, Meng C, Farley R, et al. The use of carboxymethylcellulose gel to increase non-viral gene transfer in mouse airways. Biomaterials 2010 Mar; 31(9): 2665–72

    Article  PubMed  CAS  Google Scholar 

  19. Davies LA, McLachlan G, Sumner-Jones SG, et al. Enhanced lung gene expression after aerosol delivery of concentrated pDNA/PEI complexes. Mol Ther 2008 Jul; 16(7): 1283–90

    Article  PubMed  CAS  Google Scholar 

  20. Munkonge FM, Amin V, Hyde SC, et al. Identification and functional characterization of cytoplasmic determinants of plasmid DNA nuclear import. J Biol Chem 2009 Sep 25; 284(39): 26978–87

    Article  PubMed  CAS  Google Scholar 

  21. Mayrhofer P, Schleef M, Jechlinger W. Use of minicircle plasmids for gene therapy. Methods Mol Biol 2009; 542: 87–104

    Article  PubMed  CAS  Google Scholar 

  22. Gill DR, Pringle IA, Hyde SC. Progress and prospects: the design and production of plasmid vectors. Gene Ther 2009 Feb; 16(2): 165–71

    Article  PubMed  CAS  Google Scholar 

  23. Schuettrumpf J, Milanov P, Abriss D, et al. Transgene loss and changes in the promoter methylation status as determinants for expression duration in nonviral gene transfer for factor IX. Hum Gene Ther 2011 Jan; 22(1): 101–6

    Article  CAS  Google Scholar 

  24. Schleef M, Blaesen M. Production of plasmid DNA as a pharmaceutical. Methods Mol Biol 2009; 542: 471–95

    Article  PubMed  CAS  Google Scholar 

  25. Zabner J, Couture LA, Gregory RJ, et al. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 1993 Oct 22; 75(2): 207–16

    Article  PubMed  CAS  Google Scholar 

  26. Griesenbach U, Inoue M, Hasegawa M, et al. Viral vectors for cystic fibrosis gene therapy: what does the future hold? Virus Adaptation and Treatment 2010 Dec; 2: 159–71

    Article  CAS  Google Scholar 

  27. Koehler DR, Sajjan U, Chow H, et al. Protection of CFTR knockout mice from acute lung infection by a helper-dependent adenoviral vector expressing CFTR in airway epithelia. Proc Natl Acad Sci U S A 2003 Dec 23; 100(26): 15364–9

    Article  PubMed  CAS  Google Scholar 

  28. van Heeckeren AM, Scaria A, Schluchter MD, et al. Delivery of CFTR by adenoviral vector to cystic fibrosis mouse lung in a model of chronic Pseudomonas aeruginosa lung infection. Am J Physiol Lung Cell Mol Physiol 2004 Apr; 286(4): L717–26

    Article  PubMed  Google Scholar 

  29. Buckley SM, Waddington SN, Jezzard S, et al. Intra-amniotic delivery of CFTR-expressing adenovirus does not reverse cystic fibrosis phenotype in inbred CFTR-knockout mice. Mol Ther 2008 May; 16(5): 819–24

    Article  PubMed  CAS  Google Scholar 

  30. Davies LA, Varathalingam A, Painter H, et al. Adenovirus-mediated in utero expression of CFTR does not improve survival of CFTR knockout mice. Mol Ther 2008 May; 16(5): 812–8

    Article  PubMed  CAS  Google Scholar 

  31. Gao G, Vandenberghe LH, Wilson JM. New recombinant serotypes of AAV vectors. Curr Gene Ther 2005 Jun; 5(3): 285–97

    Article  PubMed  CAS  Google Scholar 

  32. Limberis MP, Vandenberghe LH, Zhang L, et al. Transduction efficiencies of novel AAV vectors in mouse airway epithelium in vivo and human ciliated airway epithelium in vitro. Mol Ther 2009 Feb; 17(2): 294–301

    Article  PubMed  CAS  Google Scholar 

  33. Moss RB, Rodman D, Spencer LT, et al. Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, doubleblind, placebo-controlled trial. Chest 2004 Feb; 125(2): 509–21

    Article  PubMed  Google Scholar 

  34. Moss RB, Milla C, Colombo J, et al. Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial. Hum Gene Ther 2007 Aug; 18(8): 726–32

    Article  PubMed  CAS  Google Scholar 

  35. Wagner JA, Messner AH, Moran ML, et al. Safety and biological efficacy of an adeno-associated virus vector-cystic fibrosis transmembrane regulator (AAV-CFTR) in the cystic fibrosis maxillary sinus. Laryngoscope 1999 Feb; 109 (2 Pt 1): 266–74

    Article  PubMed  CAS  Google Scholar 

  36. Aitken ML, Moss RB, Waltz DA, et al. A phase I study of aerosolized administration of tgAAVCF to cystic fibrosis subjects with mild lung disease. Hum Gene Ther 2001 Oct 10; 12(15): 1907–16

    Article  PubMed  CAS  Google Scholar 

  37. Wagner JA, Nepomuceno IB, Messner AH, et al. A phase II, double-blind, randomized, placebo-controlled clinical trial of tgAAVCF using maxillary sinus delivery in patients with cystic fibrosis with antrostomies. Hum Gene Ther 2002 Jul 20; 13(11): 1349–59

    Article  PubMed  CAS  Google Scholar 

  38. Flotte TR, Zeitlin PL, Reynolds TC, et al. Phase I trial of intranasal and endobronchial administration of a recombinant adeno-associated virus serotype 2 (rAAV2)-CFTR vector in adult cystic fibrosis patients: a two-part clinical study. Hum Gene Ther 2003 Jul 20; 14(11): 1079–88

    Article  PubMed  CAS  Google Scholar 

  39. Beck SE, Jones LA, Chesnut K, et al. Repeated delivery of adeno-associated virus vectors to the rabbit airway. J Virol 1999 Nov; 73(11): 9446–55

    PubMed  CAS  Google Scholar 

  40. Halbert CL, Standaert TA, Aitken ML, et al. Transduction by adeno-associated virus vectors in the rabbit airway: efficiency, persistence, and readministration. J Virol 1997 Aug; 71(8): 5932–41

    PubMed  CAS  Google Scholar 

  41. Halbert CL, Rutledge EA, Allen JM, et al. Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J Virol 2000 Feb; 74(3): 1524–32

    Article  PubMed  CAS  Google Scholar 

  42. Auricchio A, O’Connor E, Weiner D, et al. Noninvasive gene transfer to the lung for systemic delivery of therapeutic proteins. J Clin Invest 2002 Aug; 110(4): 499–504

    PubMed  CAS  Google Scholar 

  43. Fischer AC, Beck SE, Smith CI, et al. Successful transgene expression with serial doses of aerosolized rAAV2 vectors in rhesus macaques. Mol Ther 2003 Dec; 8(6): 918–26

    Article  PubMed  CAS  Google Scholar 

  44. Halbert CL, Madtes DK, Vaughan AE, et al. Expression of human alpha1-antitrypsin in mice and dogs following AAV6 vector-mediated gene transfer to the lungs. Mol Ther 2010 Jun; 18(6): 1165–72

    Article  PubMed  CAS  Google Scholar 

  45. Liu X, Luo M, Guo C, et al. Analysis of adeno-associated virus progenitor cell transduction in mouse lung. Mol Ther 2009 Feb; 17(2): 285–93

    Article  PubMed  CAS  Google Scholar 

  46. Ferrari S, Griesenbach U, Shiraki-Iida T, et al. A defective nontransmissible recombinant Sendai virus mediates efficient gene transfer to airway epithelium in vivo. Gene Ther 2004 Nov; 11(22): 1659–64

    Article  PubMed  CAS  Google Scholar 

  47. Zhang L, Bukreyev A, Thompson CI, et al. Infection of ciliated cells by human parainfluenza virus type 3 in an in vitro model of human airway epithelium. J Virol 2005 Jan; 79(2): 1113–24

    Article  PubMed  CAS  Google Scholar 

  48. Zhang L, Button B, Gabriel SE, et al. CFTR delivery to 25% of surface epithelial cells restores normal rates of mucus transport to human cystic fibrosis airway epithelium. PLoS Biol 2009 Jul; 7(7): e1000155

    Article  PubMed  Google Scholar 

  49. Kwilas AR, Yednak MA, Zhang L, et al. Respiratory syncytial virus engineered to express the cystic fibrosis transmembrane conductance regulator corrects the bioelectric phenotype of human cystic fibrosis airway epithelium in vitro. J Virol 2010 Aug; 84(15): 7770–81

    Article  PubMed  CAS  Google Scholar 

  50. Okada Y. Sendai virus-induced cell fusion. Methods Enzymol 1993; 221: 18–41

    Article  PubMed  CAS  Google Scholar 

  51. Ferrari S, Griesenbach U, Iida A, et al. Sendai virus-mediated CFTR gene transfer to the airway epithelium. Gene Ther 2007 Oct; 14(19): 1371–9

    Article  PubMed  CAS  Google Scholar 

  52. Inoue M, Tokusumi Y, Ban H, et al. Nontransmissible virus-like particle formation by F-deficient Sendai virus is temperature sensitive and reduced by mutations in M and HN proteins. J Virol 2003 Mar; 77(5): 3238–46

    Article  PubMed  CAS  Google Scholar 

  53. Griesenbach U, Boyton RJ, Somerton L, et al. Effect of tolerance induction to immunodominant T-cell epitopes of Sendai virus on gene expression following repeat administration to lung. Gene Ther 2006 Mar; 13(5): 449–56

    Article  PubMed  CAS  Google Scholar 

  54. Kobayashi M, Iida A, Ueda Y, et al. Pseudotyped lentivirus vectors derived from simian immunodeficiency virus SIVagm with envelope glycoproteins from paramyxovirus. J Virol 2003 Feb; 77(4): 2607–14

    Article  PubMed  CAS  Google Scholar 

  55. Mitomo K, Griesenbach U, Inoue M, et al. Toward gene therapy for cystic fibrosis using a lentivirus pseudotyped with Sendai virus envelopes. Mol Ther 2010 Mar 23; 18(6): 1173–82

    Article  PubMed  CAS  Google Scholar 

  56. Sinn PL, Arias AC, Brogden KA, et al. Lentivirus vector can be readministered to nasal epithelia without blocking immune responses. J Virol 2008 Nov; 82(21): 10684–92

    Article  PubMed  CAS  Google Scholar 

  57. McKay T, Patel M, Pickles RJ, et al. Influenza M2 envelope protein augments avian influenza hemagglutinin pseudotyping of lentiviral vectors. Gene Ther 2006 Apr; 13(8): 715–24

    Article  PubMed  CAS  Google Scholar 

  58. Limberis M, Anson DS, Fuller M, et al. Recovery of airway cystic fibrosis transmembrane conductance regulator function in mice with cystic fibrosis after single-dose lentivirus-mediated gene transfer. Hum Gene Ther 2002 Nov 1; 13(16): 1961–70

    Article  PubMed  CAS  Google Scholar 

  59. Cmielewski P, Anson DS, Parsons DW. Lysophosphatidylcholine as an adjuvant for lentiviral vector mediated gene transfer to airway epithelium: effect of acyl chain length. Respir Res 2010 Jun 23; 11(1): 84–95

    Article  PubMed  Google Scholar 

  60. Medina MF, Kobinger GP, Rux J, et al. Lentiviral vectors pseudotyped with minimal filovirus envelopes increased gene transfer in murine lung. Mol Ther 2003 Nov; 8(5): 777–89

    Article  PubMed  Google Scholar 

  61. Stocker AG, Kremer KL, Koldej R, et al. Single-dose lentiviral gene transfer for lifetime airway gene expression. J Gene Med 2009 Oct; 11(10): 861–7

    Article  PubMed  CAS  Google Scholar 

  62. Rawlins EL, Hogan BL. Ciliated epithelial cell lifespan in the mouse trachea and lung. Am J Physiol Lung Cell Mol Physiol 2008 Jul; 295(1): L231–4

    Article  PubMed  CAS  Google Scholar 

  63. Howe SJ, Mansour MR, Schwarzwaelder K, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008 Sep; 118(9): 3143–50

    Article  PubMed  CAS  Google Scholar 

  64. Zufferey R, Dull T, Mandel RJ, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998 Dec; 72(12): 9873–80

    PubMed  CAS  Google Scholar 

  65. Montini E, Cesana D, Schmidt M, et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 2009 Apr; 119(4): 964–75

    Article  PubMed  CAS  Google Scholar 

  66. Buckley SM, Howe SJ, Sheard V, et al. Lentiviral transduction of the murine lung provides efficient pseudotype and developmental stage-dependent cellspecific transgene expression. Gene Ther 2008 Aug; 15(16): 1167–75

    Article  PubMed  CAS  Google Scholar 

  67. Mishra S, Wang X, Smiley N, et al. Genetic modification of airway progenitors following lentiviral gene delivery to the amniotic fluid of murine fetuses. Am J Respir Cell Mol Biol. Epub 2010 Jun 25

  68. Wilson AA, Murphy GJ, Hamakawa H, et al. Amelioration of emphysema in mice through lentiviral transduction of long-lived pulmonary alveolar macrophages. J Clin Invest 2010 Jan 4; 120(1): 379–89

    Article  PubMed  CAS  Google Scholar 

  69. Griese M, Latzin P, Kappler M, et al. Alpha 1-antitrypsin inhalation reduces airway inflammation in cystic fibrosis patients. Eur Respir J 2007 Feb; 29(2): 240–50

    Article  PubMed  CAS  Google Scholar 

  70. Huang HY, Lee CC, Chiang BL. Short hairpin RNAs against eotaxin or interleukin-5 decrease airway eosinophilia and hyper-responsiveness in a murine model of asthma. J Gene Med 2009 Feb; 11(2): 112–8

    Article  PubMed  CAS  Google Scholar 

  71. Scherr M, Venturini L, Eder M. Lentiviral vector-mediated expression of premiRNAs and antagomiRs. Methods Mol Biol 2010; 614: 175–85

    Article  PubMed  CAS  Google Scholar 

  72. Weiss DJ. Stem cells and cell therapies for cystic fibrosis and other lung diseases. Pulm Pharmacol Ther 2008 Aug; 21(4): 588–94

    Article  PubMed  CAS  Google Scholar 

  73. Wong AP, Keating A, Lu WY, et al. Identification of a bone marrow-derived epithelial-like population capable of repopulating injured mouse airway epithelium. J Clin Invest 2009 Feb; 119(2): 336–48

    PubMed  CAS  Google Scholar 

  74. Wang G, Bunnell BA, Painter RG, et al. Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis. Proc Natl Acad Sci U S A 2005 Jan 4; 102(1): 186–91

    Article  PubMed  CAS  Google Scholar 

  75. Kotton DN, Fine A. Lung stem cells. Cell Tissue Res 2008 Jan; 331(1): 145–56

    Article  PubMed  Google Scholar 

  76. Bruscia EM, Price JE, Cheng EC, et al. Assessment of cystic fibrosis transmembrane conductance regulator (CFTR) activity in CFTR-null mice after bone marrow transplantation. Proc Natl Acad Sci U S A 2006 Feb 21; 103(8): 2965–70

    Article  PubMed  CAS  Google Scholar 

  77. Bruscia EM, Ziegler EC, Price JE, et al. Engraftment of donor-derived epithelial cells in multiple organs following bone marrow transplantation into newborn mice. Stem Cells 2006 Oct; 24(10): 2299–308

    Article  PubMed  CAS  Google Scholar 

  78. Loi R, Beckett T, Goncz KK, et al. Limited restoration of cystic fibrosis lung epithelium in vivo with adult bone marrow-derived cells. Am J Respir Crit Care Med 2006 Jan 15; 173(2): 171–9

    Article  PubMed  CAS  Google Scholar 

  79. Rejman J, Colombo C, Conese M. Engraftment of bone marrow-derived stem cells to the lung in a model of acute respiratory infection by Pseudomonas aeruginosa. Mol Ther 2009 Jul; 17(7): 1257–65

    Article  PubMed  CAS  Google Scholar 

  80. Duchesneau P, Wong AP, Waddell TK. Optimization of targeted cell replacement therapy: a new approach for lung disease. Mol Ther 2010 Oct; 18(10): 1830–6

    Article  PubMed  CAS  Google Scholar 

  81. Lin YM, Zhang A, Bismarck A, et al. Effects of fibroblast growth factors on the differentiation of the pulmonary progenitors from murine embryonic stem cells. Exp Lung Res 2010 Jun; 36(5): 307–20

    Article  PubMed  Google Scholar 

  82. Samadikuchaksaraei A, Cohen S, Isaac K, et al. Derivation of distal airway epithelium from human embryonic stem cells. Tissue Eng 2006 Apr; 12(4): 867–75

    Article  PubMed  CAS  Google Scholar 

  83. Rippon HJ, Lane S, Qin M, et al. Embryonic stem cells as a source of pulmonary epithelium in vitro and in vivo. Proc Am Thorac Soc 2008 Aug 15; 5(6): 717–22

    Article  PubMed  Google Scholar 

  84. Leblond AL, Naud P, Forest V, et al. Developing cell therapy techniques for respiratory disease: intratracheal delivery of genetically engineered stem cells in a murine model of airway injury. Hum Gene Ther 2009 Nov; 20(11): 1329–43

    Article  PubMed  CAS  Google Scholar 

  85. Wang D, Morales JE, Calame DG, et al. Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice. Mol Ther 2010 Mar; 18(3): 625–34

    Article  PubMed  Google Scholar 

  86. Pickering SJ, Minger SL, Patel M, et al. Generation of a human embryonic stem cell line encoding the cystic fibrosis mutation deltaF508, using preimplantation genetic diagnosis. Reprod Biomed Online 2005 Mar; 10(3): 390–7

    Article  PubMed  Google Scholar 

  87. Somers A, Jean JC, Sommer CA, et al. Generation of transgene-free lung disease-specific human iPS cells using a single excisable lentiviral stem cell cassette. Stem Cells 2010 Oct; 28(10): 1728–40

    Article  PubMed  CAS  Google Scholar 

  88. Wang XX, Zhang FR, Shang YP, et al. Transplantation of autologous endothelial progenitor cells may be beneficial in patients with idiopathic pulmonary arterial hypertension: a pilot randomized controlled trial. J Am Coll Cardiol 2007 Apr 10; 49(14): 1566–71

    Article  PubMed  CAS  Google Scholar 

  89. Weiss DJ, Finck C. Embryonic stem cells and repair of lung injury. Mol Ther 2010 Mar; 18(3): 460–1

    Article  PubMed  CAS  Google Scholar 

  90. Macchiarini P, Jungebluth P, Go T, et al. Clinical transplantation of a tissueengineered airway. Lancet 2008 Dec 13; 372(9655): 2023–30

    Article  PubMed  Google Scholar 

  91. Petersen TH, Calle EA, Zhao L, et al. Tissue-engineered lungs for in vivo implantation. Science 2010 Jul 30; 329(5991): 538–41

    Article  PubMed  CAS  Google Scholar 

  92. Stoltz DA, Meyerholz DK, Pezzulo AA, et al. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med 2010Apr28; 2(29): 29ra31

  93. Sun X, Yan Z, Yi Y, et al. Adeno-associated virus-targeted disruption of the CFTR gene in cloned ferrets. J Clin Invest 2008 Apr; 118(4): 1578–83

    Article  PubMed  CAS  Google Scholar 

  94. Que C, Cullinan P, Geddes D. Improving rate of decline of FEV1 in young adults with cystic fibrosis. Thorax 2006 Feb; 61(2): 155–7

    Article  PubMed  CAS  Google Scholar 

  95. Grasemann H, Ratjen F. Emerging therapies for cystic fibrosis lung disease. Expert Opin Emerg Drugs 2010 Dec; 15(4): 653–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Lucinda Hellings for help with preparation of the manuscript. Our work is funded by the Cystic Fibrosis Trust and the Dr Benjamin Angel Senior Fellowship (UG). The project was supported by the NIHR Respiratory Disease Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College London. The authors have no conflict of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uta Griesenbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griesenbach, U., Alton, E.W.F.W. Current Status and Future Directions of Gene and Cell Therapy for Cystic Fibrosis. BioDrugs 25, 77–88 (2011). https://doi.org/10.2165/11586960-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11586960-000000000-00000

Keywords

Navigation