Lung functional imaging

Sam Bayat 1,2, Jim Wild 3,4 and Tilo Winkler 5

1Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France. 2Univ. Grenoble Alpes, STROBE Laboratory, INSERM UA07, Grenoble, France. 3POLARIS, Imaging Group, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK. 4Insigneo Institute, University of Sheffield, Sheffield, UK. 5Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

Corresponding author: Sam Bayat (sbayat@chu-grenoble.fr)

Shareable abstract (@ERSpublications)
Beyond pulmonary function testing, functional imaging provides deeper insights into regional heterogeneity and mechanisms of respiratory diseases with the potential for early detection and better phenotyping https://bit.ly/48MZNrB

Abstract
Pulmonary functional imaging modalities such as computed tomography, magnetic resonance imaging and nuclear imaging can quantitatively assess regional lung functional parameters and their distributions. These include ventilation, perfusion, gas exchange at the microvascular level and biomechanical properties, among other variables. This review describes the rationale, strengths and limitations of the various imaging modalities employed for lung functional imaging. It also aims to explain some of the most commonly measured parameters of regional lung function. A brief review of evidence on the role and utility of lung functional imaging in early diagnosis, accurate lung functional characterisation, disease phenotyping and advancing the understanding of disease mechanisms in major respiratory disorders is provided.

Introduction
Characteristic changes in lung function tests are a hallmark of many pulmonary diseases. However, regional changes in lung structure and function can precede detectable changes in global parameters particularly in the early stages of airway or parenchymal diseases. In virtually all lung diseases, local structural and functional alterations are heterogenous, while traditional lung function measurements can only provide global measurements. For example, small airways, which have been called the lung’s “silent zone”, contribute very little to the overall airflow resistance and local small airway disease can evolve long before it is detected by global pulmonary function tests, while it can be detected by imaging at an earlier stage [1].

Historically, we can trace the roots of pulmonary functional imaging back to 1960, when Dyson et al. [2] and West and Dollery [3] used a single coincidence detector pair, the precursor of modern positron emission tomography (PET), to investigate variations of regional perfusion and ventilation in the lungs. They identified a vertical profile, very similar to a gradient, in perfusion that contributed to developing the well-known physiological concept of West zones, which explains the effect of gravity on regional perfusion.

Modern pulmonary functional imaging uses various modalities, such as computed tomography (CT), magnetic resonance imaging (MRI) and nuclear imaging (single-photon emission computed tomography (SPECT) and PET), to assess the regional distribution of lung ventilation, perfusion, alveolar–capillary gas exchange, alveolar microstructure, biomechanical properties, and cellular or molecular processes such as inflammation or gene expression. The term “molecular imaging” is often used to refer to the latter. The various steps that are involved in acquiring a functional lung image are described in figure 1. The first step involves a quantitative measurement of a source of signal or contrast, which can be an exogenous contrast agent for CT or MRI, a pulse sequence weighting relaxation of the endogenous signal from the tissue and blood in the lungs in 1H MRI, or a radionuclide tracer for SPECT or PET imaging. If this quantitative
measurement is repeated over short periods of time, then dynamic changes can be measured. Usually, a mathematical parametric model fit is used to extract the parameter of interest, which allows conversion of a set of images into a regional parametric map of the physiological process in question.

Besides detecting disease processes early on, functional imaging can also allow the precise description of the patient’s lung functional phenotype. Such precise phenotyping is valuable in describing individual patient characteristics and disease trajectories, and in providing surrogates for clinical outcomes as imaging biomarkers for assessing new therapeutic interventions. These capabilities of functional imaging are integral parts of precision and personalised medicine [4]. Additionally, functional imaging provides a unique insight into disease processes and a better understanding of the mechanisms involved in airway and parenchymal diseases, whilst also providing unique regional insight into the signals obtained with global lung function tests.
The goal of this review is to describe the functional parameters that can be quantified by different imaging modalities, and to provide an overview of examples of their application in major lung diseases.

Regional lung functional parameters measured by imaging

Ventilation

Alveolar ventilation (V_A; units: mL·min$^{-1}$) is the volume of fresh or tracer gas delivered to the alveolar space per unit time. Specific ventilation (sV) is defined as the fraction of regional gas volume that is renewed by fresh gas per unit time, in other words: V_A/V_g (units: min$^{-1}$) where V_g is the end-expiratory gas volume within the considered region (table 1). It is a parameter that indicates how efficiently a given lung region is ventilated. Alternatively, V_A can be normalised to tissue mass, if that quantity is measured [5]. These definitions apply to dynamic image acquisition regimes incorporating time (figure 1). It is important to note that sV is not dependent on the volume of the considered region. For example, the V_A of an alveolus relative to its gas volume can be the same as for the lungs. Additionally, V_A/volume distributions can visualise mismatches between regional ventilation and gas volume, the concept is equivalent to ventilation/perfusion (V/Q) distributions. Some imaging techniques rely on static end-inspiratory and end-expiratory images to measure a specific gas volume change ($s\Delta V_g$) or tidal expansion expressed per breath.

CT has been used to measure regional ventilation by imaging the kinetics of Xenon (Xe) gas washin or washout [6, 7]. Due to its high density, Xe enhances X-ray attenuation which can be quantified and allows measurement of the rate of washin or washout of a Xe–O$_2$ mixture, hence sV. K-edge subtraction imaging uses two monochromatic X-ray beams produced with a synchrotron and material decomposition to directly quantify the distribution of Xe in the lung [8]. This imaging modality is free from beam hardening, and several times more sensitive and spatially resolved than standard CT; however, it is not available for clinical application due to the cost and scarcity of synchrotron sources.

Dual-energy CT (DECT) methods use two sets of images acquired with different X-ray photon energies (e.g. 80 and 140 kilo electron volt (keV)), obtained with various methods [9], to allow for a higher sensitivity to Xe than standard clinical CT. This technique also uses material decomposition, a method to extract element-specific contrast, with the caveat of beam hardening with polychromatic X-ray sources that complicates quantification. Nevertheless, DECT may allow simplified ventilation imaging with a single Xe gas mixture inhalation or to reduce the inhaled concentration to ∼30% in order to minimise anaesthetic side-effects if the gas is repeatedly inhaled [10]. The development of photon-counting spectral CT techniques may achieve a higher sensitivity allowing the use of Krypton, a less dense gas than Xe but without anaesthetic properties [10].

TABLE 1 Definition of functional imaging variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alveolar ventilation</td>
<td>$V_A=\Delta V/t$</td>
<td>mL·min$^{-1}$</td>
</tr>
<tr>
<td>Specific ventilation</td>
<td>$sV=V_A/V_g$</td>
<td>min$^{-1}$</td>
</tr>
<tr>
<td>Specific volume change</td>
<td>$s\Delta V_g=\Delta V_g/V_g$</td>
<td>dimensionless</td>
</tr>
<tr>
<td>Ventilation defect percentage</td>
<td>$VDP=\Delta V_g/\Delta V_g$</td>
<td>dimensionless (%)</td>
</tr>
<tr>
<td>Perfusion</td>
<td>$\dot{Q}=\Delta V_g/t$</td>
<td>mL·min$^{-1}$, mL·100mL$^{-1}$·min$^{-1#}$</td>
</tr>
<tr>
<td>Mean transit time</td>
<td>$MTT=V_g/\dot{Q}$</td>
<td>s</td>
</tr>
<tr>
<td>Ventilation/perfusion ratio</td>
<td>V_A/\dot{Q}</td>
<td>dimensionless</td>
</tr>
<tr>
<td>Blood volume</td>
<td>V_B</td>
<td>mL</td>
</tr>
<tr>
<td>Strain</td>
<td>$\varepsilon=\Delta V_g/V_g$</td>
<td>dimensionless</td>
</tr>
<tr>
<td>Elastance</td>
<td>$E=\Delta P_{aV}/\Delta V_g$</td>
<td>hPa·mL$^{-1}$, cmH$_2$O·mL$^{-1}$</td>
</tr>
<tr>
<td>Jacobian</td>
<td>J</td>
<td>dimensionless</td>
</tr>
</tbody>
</table>

VOI: volume of interest. $\#$: further normalised to tissue volume.
Instead of using an inhaled contrast gas, static three-dimensional (3D) lung CT images acquired at two different volumes (e.g. total lung capacity (TLC) and functional residual capacity (FRC) or residual volume (RV)) can be used to measure sΔVg [11], assuming that blood and tissue volume remains constant. This is based on measuring the local difference in attenuation, that reflects the change of the air content in a given voxel assuming the overall lung tissue and blood content remains unchanged. However, because the lung parenchyma moves between the two inflation states, elastic image coregistration algorithms are required to warp one image to match the other (figure 2). Similar approaches have been proposed to quantify air trapping (>−950 Hounsfield units (HU) on inspiration but <−856 HU on expiration) and distinguish functional small airway disease (PRMfSAD) from emphysema (PRMEmph) (both <−950 HU on inspiration and <−856 HU on expiration) represented as a “parametric response map” (PRM) [12].

Hyperpolarised gas MRI provides another means of assessing regional lung ventilation distribution (figure 3). This method involves imaging small, inhaled volumes of inert gases whose nuclear magnetisation has been massively enhanced by laser optical pumping to give a strong direct signal from gas in the lungs. Hyperpolarised helium-3 (3He) was initially tested most extensively due to its intrinsically stronger signal-to-noise ratio [13]; however, due to scarcity and cost of 3He, 129Xe is now being increasingly used for this purpose. In addition, Xe is soluble so can be used to measure regional gas exchange (discussed later). Ventilation imaging is usually performed at breath hold after inhaling between 300 and 1000 mL of the hyperpolarised gas (or a set percentage of TLC), starting at FRC. Regional ventilation has been assessed using a scoring system or quantitatively by measuring the volume of poorly ventilated regions, expressed as a percentage of lung volume, estimated from coregistered proton (1H) MRI.
images [14], termed ventilation defect percentage (VDP) [15]. These metrics of lung ventilation have been shown to be extremely sensitive to early obstructive lung disease in cystic fibrosis (CF) and smokers where spirometry remains normal. These metrics have been used to assess regional changes in lung ventilation in response to treatments ranging from chest physiotherapy to bronchodilators and cystic fibrosis transmembrane conductance regulator (CFTR) modulators in CF. Images are typically acquired in 3D or multiple two-dimensional slices and can be acquired at different inflation levels to assess partial obstruction/air trapping [16]. Alternatively, images can be acquired dynamically during a single breath [17, 18] or over a multiple breath washout [16] to map parameters such as sV̇. An alternative to hyperpolarised gas MRI for mapping lung ventilation with inhaled tracer gas MRI uses fluorine-19 (19F) perfluorinated gases [19], which can also be imaged dynamically as well as at breath hold.

Alternatively, oxygen-enhanced MRI can be used to measure ventilation distribution during free breathing. This technique is based on the decrease in T1 relaxation time of the water molecules in parenchymal tissue and blood in the lungs in ventilated regions, where the weakly paramagnetic molecular O2 is dissolved [20]. The rate of this signal change allows measurement of sV̇ [21].

A major advantage of MRI is the absence of ionising radiation exposure, even though very low radiation dose CT imaging with acceptable image quality is increasingly performed. As lung tissue contains a large fraction of air, there is inherently a low proton density, and the large number of air–tissue interfaces produce local magnetic field gradients that act to dephase the magnetic resonance (MR) signal (shorten T2*). These factors lower the spatial resolution and signal-to-noise ratio of proton imaging (table 2) [13]; however, MRI of the lung parenchyma using ultrashort echo time sequences is now providing clinically useful structural lung images [22]. Coregistration of short echo time of static 1H MRI acquired at different volumes has been used to measure regional lung volume changes, which correlated well with 3He MRI ventilation images [23]. Alternatively, Fourier decomposition of free-breathing 1H MRI images can be used to assess the signal change due to ventilation and perfusion.

PET, SPECT and planar scintigraphy require use of radioisotopes suitable for the imaging modality (e.g. using nitrogen-13 (13N) for PET). Additionally, the radioisotope must be part of a tracer with physical and chemical properties that allow the assessment of ventilation. An ideal tracer would be a chemically inert and insoluble gas that remains unchanged and in the gas phase. Excellent tracers with such properties that have been used for PET are neon-19 (19Ne) and 13N-N2 nitrogen gas. Note that there are varying notations for N2 containing 13N, for example, 13NN emphasises that the isotope production favoured N2 molecules with one 13N and one stable nitrogen isotope from the air. By contrast, tracers used for SPECT and scintigraphy ventilation imaging are 99-metastable-technetium (99mTc)-labelled aerosols (e.g. 99mTc diethylene triamine pentaacetic acid (DTPA) or Technegas) deposited in the alveoli, or the gaseous xenon-133 (133Xe) or 81-metastable-krypton (81mKr). The typical clinical use of SPECT and scintigraphy ventilation imaging is as part of V/Q scans for the evaluation of pulmonary embolism [24].

Pulmonary 13NN PET imaging was pioneered at the Hammersmith Hospital (London, UK) using a continuous infusion technique to assess regional V/Q ratios [25]. The 13NN-bolus injection method was developed at Massachusetts General Hospital (Boston, MA, USA) to assess ventilation and perfusion [26]. Both methods deliver the tracer by perfusion and measure the elimination by regional ventilation. But the continuous-infusion method measures the regional differences in 13N delivery and elimination at
equilibrium conditions, while the 13NN-bolus injection method analyses the tracer kinetics using dynamic PET scans. The inhalation of 13NN has also been used for ventilation imaging [27].

The advanced analysis of the washout kinetics of the 13NN-bolus injection method uses four models, including single-compartment washout, two-compartment washout, gas trapping, and a combination of a gas trapping and a washout compartment (figure 4). The time constant of the washout is proportional to $sV\dot{}$. A separate assessment of alveolar volume (e.g., by CT imaging) allows the conversion to $V\dot{}$. Combined with a perfusion assessment, $V\dot{}/Q\dot{}$ distributions based on this method have accurately predicted arterial blood gases under highly heterogeneous conditions in the lungs validating the 13NN-bolus injection method [28].

In summary, direct quantification of $V\dot{}$ requires measuring the renewal of gas per unit time (table 1, figure 1), usually using an inert tracer gas. In CT imaging, the change in X-ray attenuation between two lung inflation states is an indirect measure of the change in gas volume. Measuring gas volume change based on attenuation change assumes constant tissue and blood volume within the lung volume of interest (VOI). Regardless of the imaging modality, a calculated volume change can be expressed in absolute terms (ΔV_g; units: mL) or relative to the initial gas or tissue volume ($s\Delta V_g$).

Perfusion

Perfusion (Q, units: mL·min$^{-1}$) is the volume of blood delivered to a given region per unit time. Q is sometimes further normalised to tissue volume and expressed as mL·100mL$^{-1}$·min$^{-1}$. In CT, it can be measured using dynamic imaging during iodine or gadolinium contrast injection and indicator dilution theory [29], based on the first pass kinetics of the contrast material. Q is calculated as the ratio of peak parenchymal enhancement, based on the attenuation versus time curve of a given parenchymal voxel, to the area under the time–attenuation curve of a reference pulmonary artery [30]. Lung perfused blood volume (V_B or PBV) is obtained by the ratio of the late-phase or steady-state parenchymal contrast element mass computed by material decomposition, to the concentration within a main pulmonary arterial lumen: $V_B=q/[C]$. This method also allows measuring the contrast mean transit time (MTT) as: V_B/Q. Pulmonary V_B may alternatively be assessed during slow contrast injection or at steady concentration contrast infusion. Previous studies with DECT have shown that V_B and Q are correlated, which is plausible if the blood volume is representative of the vessel diameter that affects its resistance [30]. However, it remains unclear if the quantitative relationship is fixed and always linear. For example, local obstructions, local hypoxic vasoconstriction, which is severely blunted in acute lung injury [31], and similar mechanisms could act like a valve inserted in a tube affecting the flow without a substantial effect on the upstream volume.
Dynamic contrast-enhanced perfusion MRI is based on imaging the passage of an injected bolus of a T1-contrast agent from the right heart, through the pulmonary vasculature to the left heart using time-resolved imaging. MR angiography also allows assessment of the systemic bronchial circulation. The T1 signal enhancement versus time course is converted to a calculated concentration–time course in a given parenchymal voxel, which gives the parenchymal function. Following a brief delay corresponding to the transit of contrast through the vasculature, the signal sharply rises with the arrival of contrast, then declines to lower values as the contrast recirculates. The first pass portion of this curve can be fit by a gamma variate function both in the parenchymal region of interest, and in a reference pulmonary artery. Q̇, VB and MTT are then obtained from these curves, based on indicator dilution theory [32]. A limitation of contrast-enhanced MRI is the concern about the retention of gadolinium within the brain, with uncertainties regarding its long-term effects (table 2) [33].

Non-contrast MRI techniques have also been developed for perfusion imaging, mainly as investigative methods. One such approach is arterial spin labelling. Here, two ECG-gated images are acquired a few seconds apart, where the 1H signal within the blood is modified by radiofrequency pulses between the two images, so that their subtraction yields a parametric map of lung perfusion [34]. This approach has been used to study lung perfusion in a variety of physiological conditions [35]. Another non-contrast approach is the Fourier decomposition technique. This free-breathing method is based on separating the changes in 1H MR signal due to breathing and blood flow, which allows relative assessment of ventilation and perfusion [36]. For characterisation of blood flow in the major pulmonary arteries and veins four-dimensional velocity flow mapping can be performed providing time-resolved maps of blood flow in the main pulmonary vessels [37] and information on the cardiopulmonary vascular pulse wave.

SPECT and scintigraphy utilise 99mTc-labelled macroaggregated albumin. Most of the injected microspheres are trapped during their first pass in pulmonary capillaries [38], and their relative distribution is proportional to regional blood flow. Such scans are part of V/Q scans for assessing pulmonary embolism.

PET 13NN-saline bolus-injection for perfusion imaging can assess mean-normalised regional perfusion and differentiate up to two sub-resolution compartments per voxel using washout kinetics (figure 4). The V/Q distributions resulting from the assessment of ventilation and perfusion accurately predicted arterial blood gases validating the method [28, 39]. Alternatively, the tracer distribution at the end of an initial breath hold is proportional to the relative distribution of perfusion (figure 4). Importantly, accounting for imaging noise (the random measurement errors of the individual voxels) in PET scans allows assessment of perfusion heterogeneity [40], which can be significantly different in patients with lung diseases compared to healthy individuals.

![Schematic of the positron emission tomography 13NN-saline bolus-injection method for assessment of regional perfusion (Q) and ventilation (V). The 13NN tracer reaching the alveoli is proportional to perfusion and diffuses due to its low solubility from the blood into the alveoli. The tracer kinetics during washout using four models allows the assessment of sub-resolution functional compartments. Combining the parameters of 13NN kinetics with gas fraction measurements from corresponding computed tomography images yields a substantial number of lung function parameters and their regional differences. 13NN: N2 containing 13N; units: MBq.](https://doi.org/10.1183/20734735.0272-2022)
with controls [41, 42]. Additionally, it should be noted that 13NN methods measure pulmonary perfusion at the capillary level because they assess the tracer transfer from the capillaries into the alveoli.

The PET 13NN continuous-infusion technique requires an additional ventilation scan to derive regional perfusion [25]. A 15O-H_2O method also requires two scans for a model-based assessment of regional perfusion [43]. Clinical investigations typically use Gallium-68 (68Ga)-labelled macroaggregated albumin to assess pulmonary perfusion.

V/Q ratio

The V/Q ratio is a fundamental parameter of gas exchange and V/Q distributions characterise the contributions of different functional lung units, including pulmonary shunt as the lowest V/Q ratio and alveolar dead space as the highest. Most of the published V/Q distributions were measured using the multiple inert gas elimination technique (MIGET), e.g. [44]. In contrast to the overall characterisation of the lungs obtained using MIGET, PET, MRI and SPECT imaging allow regional assessments of V/Q ratios and associated gas exchange parameters [24, 28, 45, 46]. For example, V/Q imaging has provided insights into highly heterogeneous regional variations in ventilation and perfusion that can explain changes in arterial blood gases [28], estimates of alveolar O_2 and CO_2 partial pressures in ventilation defects (VDef) during bronchoconstriction in asthma [47, 48], regional O_2 and CO_2 transfer in asthma [49], the spatial distribution of alveolar dead space and its effects on gas exchange in early acute respiratory distress syndrome [50], and the effects of nitric oxide (NO) inhalation on regional perfusion and V/Q in pulmonary arterial hypertension [51]. Clinically, SPECT V/Q scans are, for example, used for regional examination in pulmonary embolism.

An important distinction between MIGET and V/Q imaging is that the MIGET method measures six inert gases and uses a smoothing function to estimate V/Q distributions with 50 data points, while imaging-based V/Q distributions are comparable to histograms of the voxel data inside the lung mask [51]. The heterogeneity of V/Q distributions can be characterised as the standard deviations of the perfusion-weighted and ventilation-weighted natural logarithm of the V/Q distribution, typically referred to as $\text{log SD}_{\dot{V}Q}$ and $\text{log SD}_{\dot{V}V}$, respectively [51–53].

Exchange at the capillary–alveolar barrier

Dissolved phase xenon MRI provides a means to assess regional gas exchange from the alveolus, through the interstitial tissue (membrane) and into the red blood cells (RBCs) in the capillaries. Xenon is soluble in tissues and RBCs, and the 129Xe signal has a unique spectroscopic resonant frequency that depends upon the compartment and can thus be used to image gas transfer and membrane diffusion. Time resolved spectroscopic studies of membrane diffusion can be used to estimate membrane thickness [54, 55]. With spectroscopic imaging methods, maps of the signals in the gas, membrane and RBC compartments can be computed that provide regional information on gas exchange [56], which has been shown to be sensitive to disease progression in interstitial lung diseases [57, 58] and to disease severity in post-COVID-19 lung disease [59].

PET imaging of 68Ga-transferrin has been used to assess the pulmonary transcapillary escape rate (PTCER) and has shown that PTCER is a sensitive but nonspecific index [60]. Alternatively, 15O-H_2O can assess the regional distribution of lung water concentration [31].

Biomechanics

Strain is defined by the relative change in gas volume, mainly as a result of ventilation. It is a dimensionless parameter and expressed as the change in volume (ΔV_g) relative to the reference volume which may be RV, FRC or end-expiratory volume: $\Delta V_g/V_{\text{ref}}$. The volume with reference to which strain is measured is currently not standardised and should be systematically reported. Strain is identical to $s\Delta V_g$ (see the section entitled Ventilation). However, it is important to distinguish this metric from \dot{V}_V, as illustrated in figure 2. The local lung stiffness or elastance is given by the pressure change (ΔP_g) required to induce a given ΔV_g: or: $\Delta P_g/\Delta V_g$ under conditions where regional alveolar pressures are fully equilibrated. Non-rigid coregistration of CT images acquired at two different lung volumes allows mapping the local lung strain based on the 3D transformation matrix between the two volumes. The determinant of this matrix is termed the Jacobian determinant or Jacobian. The Jacobian is a biomechanical metric that informs on the local lung deformation [61]. A Jacobian determinant value >1 indicates local expansion whereas a value <1 indicates local contraction. However, it should be noted that elastic registration algorithms have limitations in their accuracy and that Jacobians are estimates.
X-ray imaging with a synchrotron source allows imaging of parenchymal strain at a resolution of a few micrometres in small animals [62]. Imaging local lung elastance, however, requires knowledge of the pressure within the imaged airspaces at any given volume (table 1). This is feasible only in static conditions, reasonably assuming an equal pressure field within communicating airspaces at pressure equilibrium. However, during tidal breathing the local pressures within the airspaces cannot be directly measured.

Elastography uses shear wave propagation and the phase of the MRI signal to measure local lung deformation and estimate elastance, assuming a uniform pressure field. MR elastography has been applied in pilot studies in lungs in patients with interstitial lung disease to measure parenchymal stiffness [63].

Functional imaging of major pulmonary diseases

COPD

COPD is a heterogenous disorder with different phenotypes and progression. This disorder is characterised by varying degrees of small airway disease and emphysema, and is sometimes associated with fibrosis or pathological vascular structure [64]. There are very limited disease-modifying therapeutic options, in part because therapeutic advances are impeded by the difficulty in identifying subpopulations at risk of accelerated lung function decline [65]. There is an increasing focus on early detection and deep phenotyping of at-risk subjects and those with early COPD, in order for therapeutic intervention to prevent progression to emphysema. The COPDGene follow-up data have shown that PRM\(\Delta V_g\) at baseline is associated with subsequent forced expiratory volume in 1 s (FEV\(_1\)) decline [66] and emphysema development [67], suggesting it can serve as a surrogate imaging biomarker. CT registration-based regional \(sV\) change (\(s\Delta V_g\)) and Jacobian are associated not only with lung function, but also with symptoms, gas exchange and exercise capacity [68]. CT-based perfusion imaging has shown an increased \(Q\) heterogeneity in subjects with apical centrilobular emphysema, suggesting that reduced \(Q\) to regions with smoking-associated inflammation may be a causal factor in emphysema [69]. Regional lung ventilation has been assessed with Xe-enhanced DECT in subjects with COPD revealing reduced ventilation and trapping in regions with low attenuation due to emphysema [70].

Hyperpolarised gas ventilation MRI provides information on early obstructive lung disease (ventilation heterogeneity) in smokers before changes in airflow are detected with spirometry [14]. By measuring the Brownian diffusion coefficient early changes in alveolar dimensions related to subclinical emphysema can also be measured [71, 72]. In diagnosed COPD patients, hyperpolarised gas ventilation MRI can predict clinical exacerbation frequency in patients with mild–moderate severity. When ventilation MRI is combined with diffusion coefficient measurements of alveolar emphysema, the imaging can provide insight into emphysematous versus obstructive phenotypes [73]. Time-resolved imaging of delayed ventilation can also be used to assess collateral ventilation pathways across lung fissures [74] and has been used clinically to plan lung volume reduction surgery and endobronchial valve placement. Dissolved xenon MRI has also been used to understand mechanisms of gas transfer in patients with COPD [75].

COPD also affects the pulmonary vasculature causing significant changes in regional perfusion that may be an early indicator of the disease [41]. Furthermore, the association between COPD and HIV is poorly understood, but a recent PET imaging study found that HIV infection contributes to pulmonary perfusion abnormalities similar to those in smokers [76]. When ventilation MRI is combined with perfusion MRI, mechanisms of \(V/Q\) matching in response to new therapies for COPD can be assessed [77, 78].

Asthma

Morphological CT imaging has allowed characterisation of airway remodelling, showing that increased airway wall thickness [79], but also obliteration by mucus plugging [80] is associated with disease severity and reduced lung function. Besides structural remodelling, airway distensibility and constriction has been studied with CT imaging in asthmatic subjects and has shown stiffer airways, inhomogeneous constriction [81, 82], and a greater propensity for airway closure [83]. These findings have suggested that an increased baseline airway wall thickness due to inflammation and remodelling in asthma patients promotes airway narrowing.

Ventilation distribution is known to be inhomogeneous in asthma patients based on inert gas washout even in the absence of symptoms or spirometric evidence of airway obstruction [84]. This feature of asthma was initially revealed by scintigraphy using radioactive \(^{133}\)Xe [85]. Later SPECT studies with \(^{99m}\)Tc-labelled carbon particles showed that the extent of VDeFs after methacholine challenge is determined by small airway disease [86].
A fundamental contribution of functional imaging studies to the understanding of asthma is that they revealed the emergence of VDEfs during bronchoconstriction (figure 5), leading to the development of a computational model that could explain the regional clustering of severe airway constriction. It demonstrated that it is an emergent phenomenon beyond a tipping point in airway narrowing [87–89]. The primary feedback among airways leading to VDEfs can be explained using, for simplicity, a single airway bifurcation. Lower airflow in one daughter airway results in lower expansion of the tissue surrounding the airway, lowering the parenchymal tethering forces, increasing smooth muscle constriction, and increasing airway resistance. In contrast, the higher airflow in the other daughter airway results in higher regional tethering forces preventing further constriction.

CT imaging of airway wall area and other imaging-derived parameters has recently shown that they are epidemiological predictors of the rate of future exacerbations and lung function decline in severe asthma [90]. The far-reaching implications of these findings are that airway remodelling shifts the tipping point for the emergence of VDEfs during an asthma attack or exacerbation, increasing the sensitivity to stimuli [89].

PET imaging has shown that aerosols inhaled during bronchoconstriction are deposited in airways of ventilated regions outside of VDEfs, which has implications for the efficiency of bronchodilator delivery [91].

FIGURE 5 Example of positron emission tomography imaging of ventilation defects (VDEfs) during bronchoconstriction in asthma using 13N$_2$. The severe airway constriction or closure of airways within VDEfs results in the retention of the 13N$_2$, delivered by perfusion, inside VDEfs, which are affected by body position. The selected slices using a “hot” colour scale show the magnitude of the tracer activity from low (black) to high (white). The green outlines illustrate the identified boundaries of VDEfs visualised in three-dimensional renderings as VDef volumes inside the lungs (transparent blue). Images are from the same subject studied on two different days after receiving the methacholine challenge in the prone position on both occasions. Note the tendency of the VDEfs location to be in a dependent part of the lungs suggesting an effect of regional parenchymal forces in contrast to aerosol deposition during prone inhalation. Reproduced from [135] with permission. 13N$_2$: N$_2$ containing 13N.
Also, it has been demonstrated that bronchodilator inhalation can increase peak expiratory flow (PEF) without changing VDefs, which suggests an increase in PEF due to the dilation of airways outside of VDefs [92].

Perfusion inside VDefs is decreased, which could be expected, due to severely impaired regional ventilation causing hypoxic vasoconstriction [93]. Surprisingly, however, perfusion inside VDefs was lower than hypoxic and hypercapnic vasoconstriction predicted, suggesting that another mechanism contributes to the change [47, 48].

Hyperpolarised gas ventilation MRI has provided detailed insight into disease severity in adults and children [94], and into the regional response of the lungs to bronchodilators [95], novel biologic therapies [96] and bronchial thermoplasty [97]. Ventilation patterns from hyperpolarised gas ventilation MRI have been coupled to CT airway measurements to help phenotype small and large airways disease in asthma [98].

Xe-enhanced DECT imaging has also been used to study ventilation inhomogeneity and the presence of VDefs with comparison to spirometry [99].

It is becoming increasingly apparent that asthma is associated with heterogenous changes inside the lungs, where accurate phenotyping of patients and assessments of regional changes towards personalised treatment strategies is crucial. Both structural imaging of the airways and parenchyma, and ventilation imaging can provide useful means of accurate functional characterisation and provide outcome measures for the developing disease-modifying drugs.

Interstitial lung diseases

High-resolution CT plays a major role in the detection and follow-up of lung fibrosis. The individual progression of fibrosis is highly variable among patients [100]. The goal of antifibrotic drug therapy is to slow down the progression of the disease. In this context, the early identification of patients with a faster rate of disease progression is important for the optimisation of individual treatment. Functional imaging techniques have shown promise in the early identification and characterisation of lung fibrosis. DECT registration-based regional volume change and blood volume measured by late parenchymal contrast enhancement were both found to be associated with later decline in lung volume [101], providing potential biomarkers for fibrosis progression. Image registration has also been applied to match 1H MRI images acquired upon inspiration and expiration to assess the local deformation based on the Jacobian. Using this approach, it was shown that subjects with scleroderma and lung fibrosis had a reduced deformation in dorsal regions of the lung bases, unlike normal controls or those with scleroderma but without fibrosis, although there was no added value beyond high-resolution CT for identifying fibrosis [102].

Hyperpolarised 129Xe MRI has allowed mapping of the barrier thickening as well the reduced RBC transfer in patients with idiopathic pulmonary fibrosis (IPF) [103]. In addition, 129Xe MRI has shown that RBC transfer decreases over a relatively short time interval of 1 year, while neither carbon monoxide diffusion capacity (D_LCO) nor forced vital capacity changes significantly, suggesting that this metric may be sensitive to disease progression [57]. Perfusion MRI has been used to assess microvascular changes in blood volume and lung transit time in IPF [104, 105].

Fluorine-18 2-fluoro-2-deoxy-D-glucose (18F-FDG) PET imaging is used in lungs without cancer to assess regional metabolic activity associated with inflammation [106]. In interstitial lung disease, 18F-FDG uptake parameters were correlated with baseline quality of life but were not predictors for the subsequent change in quality of life over 4 years [107]. Also, 18F-FDG PET imaging has shown significant differences between rapid progression in interstitial lung disease and non-rapid progression [108].

Cystic fibrosis

CF is the most common genetic disorder causing premature death in the Caucasian population [109]. CF lung disease manifests in early childhood and is characterised by chronic bacterial infection and inflammation with episodic exacerbations leading to progressive bronchiectasis and lung function decline [110]. Chest CT is the gold standard for morphological characterisation of CF lung disease and the detection of bronchiectasis, air trapping and mucus plugging, with scoring systems that allow the assessment of disease progression [111]. However, radiation dose is a concern with repeated CT examination, particularly in young children who are more sensitive to radiation-induced malignancy [13]. CT ventilation or perfusion imaging are therefore scarce in this population. Both T1- and T2-weighted proton MRI is routinely used for the morphological follow-up of subjects with CF. A number of studies with hyperpolarised gas MRI have assessed VDP in subjects with CF. These have shown that hyperpolarised 3He MRI is more sensitive...
than spirometry, CT or lung clearance index (LCI) in detecting early lung disease in children with CF [112, 113], albeit in a small number of subjects. \(^3\)He MRI was also able to detect the effect of therapy with CFTR modulators [114].

Dynamic contrast-enhanced MRI has previously been used to assess perfusion abnormalities in children and adults with CF, and showed a good correlation with multiple breath washout LCI [115]. Contrast-enhanced MRI is also able to detect exacerbations and recovery after antibiotic therapy, although concerns with gadolinium contrast retention in the brain limit its routine clinical use. More recently, Fourier decomposition approaches have been used for ventilation and perfusion imaging in children with CF. Relative fractional ventilation and relative perfusion showed strong correlations with LCI [116], and appeared promising for non-contrast monitoring of functional impairment in this population. The registration of breath hold inspiratory and expiratory MRI images allows measurement of the local change in \(^3\)H signal which has been used to infer the local volume change in subjects with CF. This approach has the advantage of not requiring any tracer gas inhalation, correlates well with similar registration-based CT imaging methods and allows comparison of the local volume change and structural alterations, assessing structure–function relationships [117].

Pulmonary hypertension

Functional imaging has an established role in the assessment of patients with chronic thromboembolic pulmonary hypertension (CTEPH). Traditionally, planar ventilation and perfusion scintigraphy has been used in the evaluation and selection of patients for surgical pulmonary thromboendarterectomy or balloon angioplasty alongside right heart catheterisation, echocardiography and CT angiography [118]. DECT mapping of \(V_p\) allows the indirect detection of perfusion defects that appear as wedge-shaped areas of decreased blood volume, and has an incremental value in the diagnosis of acute pulmonary thromboembolism and CTEPH [119, 120], and may contribute to the differential diagnosis [121]. DECT has the advantage of revealing the detailed underlying lung morphology, large blood vessels and blood volume fraction at the voxel level.

A PET imaging study found that perfusion heterogeneity during NO inhalation can distinguish pulmonary arterial hypertension patients from healthy subjects and has potential as an imaging biomarker [51].

Lung cancer and preoperative assessment

Perhaps one of the earliest clinical applications of functional lung imaging has been the preoperative assessment of lung resection surgery candidates. Surgery is considered as the only curative therapy for many patients with lung cancer. Because resectable tumours often occur in patients with respiratory comorbidities, the current recommendations are to systematically assess lung function (FEV\(_1\), \(D_{LCO}\)) prior to surgery [122]. An anatomic prediction of post-operative FEV\(_1\) (ppoFEV\(_1\)) is based on preoperative FEV\(_1\) and counting the number of segments to be removed. A ppoFEV\(_1\) <30% is considered as the threshold to stratify high-risk patients [122]. In subjects with borderline lung function, functional imaging is recommended to predict post-operative lung function [122]. Both planar perfusion and \(^{81}\)Kr ventilation scintigraphy allow good prediction of ppoFEV\(_1\), although perfusion scintigraphy with \(^{99}\)mTc-labelled macroaggregated albumin has been the most widely used method in patients undergoing pneumonectomy. However, planar scintigraphy may not be sufficiently accurate for predicting ppoFEV\(_1\) after lobectomy [122]. In recent years, ventilation and perfusion DECT, SPECT, coregistered SPECT/CT, and dynamic contrast-enhanced MRI have been evaluated for predicting ppoFEV\(_1\) in subjects with lung cancer [123]. Among these techniques, perfusion SPECT/CT and contrast-enhanced perfusion MRI have shown equivalent and better accuracy than planar scintigraphy in predicting post-operative lung function [124].

A common adverse complication induced by thoracic radiotherapy is radiation-induced lung injury (RILI), which manifests acutely as pneumonitis and chronically as fibrosis, significantly reducing patient survival and quality of life [125]. Increased incidental radiation dose to regions of high-functioning lung has exhibited correlation with increased radiation pneumonitis incidence [126]. Accordingly, the paradigm of functional lung avoidance radiotherapy (FLA-RT), where higher functioning lung regions, as defined by a functional lung imaging modality, are preferentially spared of radiation dose while maintaining tumour and other organ-at-risk dose constraints, may minimise RILI [127]. Several functional lung imaging modalities have been employed for FLA-RT; early studies investigated nuclear imaging-based SPECT via \(^{99}\)mTc-labelled macroaggregated albumin perfusion [128], while more recent nuclear imaging studies have employed PET via Gallium-68 ventilation and perfusion [129]. MRI-based FLA-RT studies have employed hyperpolarised \(^3\)He MRI [130], with more recent work focussed on harnessing the unique properties of \(^{129}\)Xe in terms of its moderate solubility in lung parenchyma and blood, facilitating gas exchange-guided
FLA-RT [131]. FLA-RT studies have also employed techniques developed to generate surrogates of regional ventilation from multi-inflation CT, acquired during tidal breathing or breath hold, without exogenous contrast or specialised equipment [132]. Such techniques are of particular interest to radiation oncology practitioners due to CT being routinely acquired as standard-of-care for thoracic oncology patients undergoing radiotherapy.

Research in physiology and pathophysiology

Pulmonary functional imaging studies in healthy subjects have revealed regional physiological characteristics in the lungs, including gradients, and their response to changes in external conditions. For example, the effect of prone and supine body positions on the topographical distribution of pulmonary perfusion and ventilation [133]. Additionally, pulmonary imaging studies have been invaluable in lung disease research yielding novel insights into regional disease processes and their dynamics, as demonstrated in this review. More accurate and technically challenging imaging methods may be primarily used in the research domain since robustness and cost are key constraints for clinical use. However, the findings of such imaging methods can nevertheless have far-reaching impacts on the clinical interpretation of common pulmonary function tests.

Conclusions

Several factors currently impede the more widespread clinical use of functional lung imaging. First, consensus on standardised definitions for image-derived lung functional metrics relying on basic physical and physiological principles is needed. Second, population-based normal reference values for key parameters are crucially required, as well as knowledge of the limits of normality and minimal clinically significant change. Finally, standardised protocols for quantitative reproducibility across imaging centres is a key step in improving the quality of future clinical trials. Another challenge is filling the evidence gap regarding the contribution of lung functional imaging to better patient outcomes. From a technical standpoint, image post-processing is often sophisticated, and fast and automated tools for processing and analysis are needed. Finally, robustness and cost-effectiveness remain significant challenges [4, 13, 134].

Despite these challenges, functional lung imaging has a number of strengths. It allows quantification of regional differences in lung function. It provides local information that traditional global lung function tests cannot access, and functional measurements that imaging techniques assessing anatomical structures are unable to perform. There is growing evidence that functional imaging allows sensitive detection of early-stage diseases, precise phenotyping of patient subtypes, provides surrogate markers that can serve as intermediate end-points in drug or intervention trials, and gives valuable insight into the mechanisms of respiratory diseases. Ongoing technological developments aim at improving spatial, temporal and contrast sensitivity, and reduce or suppress ionising radiation. The most advanced and technically challenging methods may be primarily used in the research domain or for specific indications justifying the resources required beyond traditional testing methods.

Key points

- Pulmonary functional imaging using, for example, CT, MRI and nuclear imaging (SPECT, PET) can assess regional ventilation, perfusion, alveolar–capillary gas exchange, alveolar microstructure, biomechanical properties, and even cellular or molecular processes.
- Functional imaging allows local quantifications and assessments of regional differences, in contrast to the global averages of traditional lung function tests, and functional rather than the structural measurements that other imaging techniques yield.
- Functional imaging provides a unique insight into disease processes, early phase disease detection, precise lung functional phenotyping, and may provide imaging end-points for assessing new therapeutic interventions.
- Functional imaging is applied in major lung disorders, such as COPD, asthma, CF, interstitial lung diseases and pulmonary hypertension, as well as in preoperative assessment of lung resection.

Conflict of interest: T. Winkler reports support for the present manuscript from National Institutes of Health (NIH), USA, research grant R01HL141900. T. Winkler reports the following disclosures outside the submitted work: patents planned, issued or pending 1) US8527034B2 - Image derived input function for PET lung assessment, no royalty payments, and 2) DE 101 07 917 A 1 - Anordnung zur verbrauchsarmen Applikation gasförmiger Stoffe [Assembly for reducing consumption during the application of gaseous substances], no royalty payments. The remaining authors have nothing to disclose.
References

Levine D, McDonald RJ, Kressel HY. Gadolinium retention after contrast-enhanced MRI. *JAMA* 2018; 320: 1853–1854.

Kelly VJ, Winkler T, Harris RS. Reply to Dorrington, et al. and to Swenson: “Hypercapnic pulmonary vasoconstriction contributes to regional perfusion distribution: relevance to asthma” and “Hypercapnic pulmonary vasoconstriction as a mechanism for regional perfusion redistribution in asthma”. *Am J Respir Crit Care Med* 2018; 197: 684.

BREATHE LUNG FUNCTION CORNER | S. BAYAT ET AL.

